5 research outputs found

    Bilateral Vestibular Hypofunction in Neurosarcoidosis: A Case Report

    Get PDF
    We describe the case of a 59-year-old woman who presented with progressive bilateral vestibular hypofunction and who was found to have bilateral granulomatous mass lesions of the mesial temporal lobe. Initially, her condition stabilized neurologically with corticosteroids, but a diagnosis of neurosarcoidosis was delayed because of the unusual presentation and persistently normal chest imaging results and serum angiotensin-converting enzyme (ACE) levels. Approximately 1 year after her initial presentation, the patient died of complications of a myocardial infarction and pulmonary embolism. Sarcoidosis should be considered in the differential diagnosis of idiopathic bilateral vestibular hypofunction even if the chest imaging and serum ACE levels are normal, particularly when there is evidence of a multisystem process

    Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury.

    Get PDF
    BackgroundNeuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage.MethodsWe examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR).ResultsDFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls.ConclusionNeuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries
    corecore