3,542 research outputs found

    Spectral analysis of three-dimensional photonic jets

    No full text
    International audienceThe spatial and spectral properties of three-dimensional photonic jets are studied in a framework employing rigorous Lorentz-Mie theory. The contributions to the field from each spectral component are studied quantitatively and highlight the distinctive features of photonic jets. In particular, the presence of secondary lobes in the propagative frequency distribution are singled out as a fundamental distinctive property between photonic jets and classical Gaussian beams. It is shown that these differences can lead to divergences of photonic jets at least twice as small as those in corresponding ‘Gaussian' beams

    Ultracompact and unidirectional metallic antennas

    Get PDF
    International audienceWe investigate the angular redistribution of light radiated by a single emitter located in the vicinity of dipolar silver nanoparticles. We point out the fundamental role of the phase differences introduced by the optical path difference between the emitter and the particle and demonstrate that the polarizability of the metallic nanoparticle alone cannot predict the emission directionality. In particular, we show that collective or reflective properties of single nanoparticles can be controlled by tuning the distance of a single emitter at a λ/30 scale. These results enable us to design unidirectional and ultracompact nanoantennas composed of just two coupled nanoparticles separated by a distance achievable with biological linkers

    In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography

    Get PDF
    The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies

    Direct imaging of photonic nanojets

    No full text
    International audienceWe report the direct experimental observation of photonic nanojets created by single latex microspheres illuminated by a plane wave at a wavelength of 520 nm. Measurements are performed with a fast scanning confocal microscope in detection mode, where the detection pinhole defines a diffraction-limited observation volume that is scanned in three dimensions over the microsphere vicinity. From the collected stack of images, we reconstruct the full 3 dimensional photonic nanojet beam. Observations are conducted forpolystyrene spheres of 1, 3 and 5 mum diameter deposited on a glass substrate, the upper medium being air or water. Experimental results are compared to calculations performed using the Mie theory. We measure nanojet sizes as small as 270 nm FWHM for a 3 mum sphere at a wavelength lambda of 520 nm. The beam keeps a subwavelength FWHM over a propagation distance of more than 3 lambda, displaying all the specificities of a photonic nanojet

    Sonic Booms in Atmospheric Turbulence (SonicBAT): The Influence of Turbulence on Shaped Sonic Booms

    Get PDF
    The objectives of the Sonic Booms in Atmospheric Turbulence (SonicBAT) Program were to develop and validate, via research flight experiments under a range of realistic atmospheric conditions, one numeric turbulence model research code and one classic turbulence model research code using traditional N-wave booms in the presence of atmospheric turbulence, and to apply these models to assess the effects of turbulence on the levels of shaped sonic booms predicted from low boom aircraft designs. The SonicBAT program has successfully investigated sonic boom turbulence effects through the execution of flight experiments at two NASA centers, Armstrong Flight Research Center (AFRC) and Kennedy Space Center (KSC), collecting a comprehensive set of acoustic and atmospheric turbulence data that were used to validate the numeric and classic turbulence models developed. The validated codes were incorporated into the PCBoom sonic boom prediction software and used to estimate the effect of turbulence on the levels of shaped sonic booms associated with several low boom aircraft designs. The SonicBAT program was a four year effort that consisted of turbulence model development and refinement throughout the entire period as well as extensive flight test planning that culminated with the two research flight tests being conducted in the second and third years of the program. The SonicBAT team, led by Wyle, includes partners from the Pennsylvania State University, Lockheed Martin, Gulfstream Aerospace, Boeing, Eagle Aeronautics, Technical & Business Systems, and the Laboratory of Fluid Mechanics and Acoustics (France). A number of collaborators, including the Japan Aerospace Exploration Agency, also participated by supporting the experiments with human and equipment resources at their own expense. Three NASA centers, AFRC, Langley Research Center (LaRC), and KSC were essential to the planning and conduct of the experiments. The experiments involved precision flight of either an F-18A or F-18B executing steady, level passes at supersonic airspeeds in a turbulent atmosphere to create sonic boom signatures that had been distorted by turbulence. The flights spanned a range of atmospheric turbulence conditions at NASA Armstrong and Kennedy in order to provide a variety of conditions for code validations. The SonicBAT experiments at both sites were designed to capture simultaneous F-18A or F-18B onboard flight instrumentation data, high fidelity ground based and airborne acoustic data, surface and upper air meteorological data, and additional meteorological data from ultrasonic anemometers and SODARs to determine the local atmospheric turbulence and boundary layer height
    corecore