20 research outputs found

    Comparative Effects of Heterologous TRPV1 and TRPM8 Expression in Rat Hippocampal Neurons

    Get PDF
    Heterologous channel expression can be used to control activity in select neuronal populations, thus expanding the tools available to modern neuroscience. However, the secondary effects of exogenous channel expression are often left unexplored. We expressed two transient receptor potential (TRP) channel family members, TRPV1 and TRPM8, in cultured hippocampal neurons. We compared functional expression levels and secondary effects of channel expression and activation on neuronal survival and signaling. We found that activation of both channels with appropriate agonist caused large depolarizing currents in voltage-clamped hippocampal neurons, exceeding the amplitude responses to a calibrating 30 mM KCl stimulation. Both TRPV1 and TRPM8 currents were reduced but not eliminated by 4 hr incubation in saturating agonist concentration. In the case of TRPV1, but not TRPM8, prolonged agonist exposure caused strong calcium-dependent toxicity. In addition, TRPV1 expression depressed synaptic transmission dramatically without overt signs of toxicity, possibly due to low-level TRPV1 activation in the absence of exogenous agonist application. Despite evidence of expression at presynaptic sites, in addition to somatodendritic sites, TRPM8 expression alone exhibited no effects on synaptic transmission. Therefore, by a number of criteria, TRPM8 proved the superior choice for control over neuronal membrane potential. This study also highlights the need to explore potential secondary effects of long-term expression and activation of heterologously introduced channels

    Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of prostaglandins (PGs) sensitize dorsal root ganglion (DRG) neurons and contribute to inflammatory hyperalgesia by signaling through specific G protein-coupled receptors (GPCRs). One mechanism whereby PGs sensitize these neurons is through modulation of "thermoTRPs," a subset of ion channels activated by temperature belonging to the Transient Receptor Potential ion channel superfamily. Acrid, electrophilic chemicals including cinnamaldehyde (CA) and allyl isothiocyanate (AITC), derivatives of cinnamon and mustard oil respectively, activate thermoTRP member TRPA1 via direct modification of channel cysteine residues.</p> <p>Results</p> <p>Our search for endogenous chemical activators utilizing a bioactive lipid library screen identified a cyclopentane PGD<sub>2 </sub>metabolite, 15-deoxy-Ξ”<sup>12,14</sup>-prostaglandin J<sub>2 </sub>(15d-PGJ<sub>2</sub>), as a TRPA1 agonist. Similar to CA and AITC, this electrophilic molecule is known to modify cysteines of cellular target proteins. Electophysiological recordings verified that 15d-PGJ<sub>2 </sub>specifically activates TRPA1 and not TRPV1 or TRPM8 (thermoTRPs also enriched in DRG). Accordingly, we identified a population of mouse DRG neurons responsive to 15d-PGJ<sub>2 </sub>and AITC that is absent in cultures derived from TRPA1 knockout mice. The irritant molecules that activate TRPA1 evoke nociceptive responses. However, 15d-PGJ<sub>2 </sub>has not been correlated with painful sensations; rather, it is considered to mediate anti-inflammatory processes via binding to the nuclear peroxisome proliferator-activated receptor gamma (PPARΞ³). Our <it>in vivo </it>studies revealed that 15d-PGJ<sub>2 </sub>induced acute nociceptive responses when administered cutaneously. Moreover, mice deficient in the TRPA1 channel failed to exhibit such behaviors.</p> <p>Conclusion</p> <p>In conclusion, we show that 15d-PGJ<sub>2 </sub>induces acute nociception when administered cutaneously and does so via a TRPA1-specific mechanism.</p

    Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception

    Get PDF
    BACKGROUND: The Transient Receptor Potential (TRP) ion channel TRPA1 is a key player in pain pathways. Irritant chemicals activate ion channel TRPA1 via covalent modification of N-terminal cysteines. We and others have shown that 15-Deoxy-Ξ”12, 14-prostaglandin J(2) (15d-PGJ(2)) similarly activates TRPA1 and causes channel-dependent nociception. Paradoxically, 15d-PGJ(2) can also be anti-nociceptive in several pain models. Here we hypothesized that activation and subsequent desensitization of TRPA1 in dorsal root ganglion (DRG) neurons underlies the anti-nociceptive property of 15d-PGJ(2). To investigate this, we utilized a battery of behavioral assays and intracellular Ca(2+) imaging in DRG neurons to test if pre-treatment with 15d-PGJ(2) inhibited TRPA1 to subsequent stimulation. RESULTS: Intraplantar pre-injection of 15d-PGJ(2), in contrast to mustard oil (AITC), attenuated acute nocifensive responses to subsequent injections of 15d-PGJ(2) and AITC, but not capsaicin (CAP). Intraplantar 15d-PGJ(2)β€”administered after the induction of inflammationβ€”reduced mechanical hypersensitivity in the Complete Freund’s Adjuvant (CFA) model for up to 2 h post-injection. The 15d-PGJ(2)-mediated reduction in mechanical hypersensitivity is dependent on TRPA1, as this effect was absent in TRPA1 knockout mice. Ca(2+) imaging studies of DRG neurons demonstrated that 15d-PGJ(2) pre-exposure reduced the magnitude and number of neuronal responses to AITC, but not CAP. AITC responses were not reduced when neurons were pre-exposed to 15d-PGJ(2) combined with HC-030031 (TRPA1 antagonist), demonstrating that inhibitory effects of 15d-PGJ(2) depend on TRPA1 activation. Single daily doses of 15d-PGJ(2), administered during the course of 4 days in the CFA model, effectively reversed mechanical hypersensitivity without apparent tolerance or toxicity. CONCLUSIONS: Taken together, our data support the hypothesis that 15d-PGJ(2) induces activation followed by persistent inhibition of TRPA1 channels in DRG sensory neurons in vitro and in vivo. Moreover, we demonstrate novel evidence that 15d-PGJ(2) is analgesic in mouse models of pain via a TRPA1-dependent mechanism. Collectively, our studies support that TRPA1 agonists may be useful as pain therapeutics

    Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the β€œheadache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons.</p> <p>Methods</p> <p>We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG.</p> <p>Results and conclusions</p> <p>We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.</p
    corecore