3 research outputs found

    Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices

    Get PDF
    We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high energy physics and beyond on noisy intermediate-scale quantum (NISQ) devices. The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits. The second method is an efficient mitigation of readout errors on quantum devices. Both methods can lead to significant improvements in quantum simulations, e.g., when variational quantum eigensolvers are used.Comment: 15 pages, 6 figures, invited manuscript for Philosophical Transactions of the Royal Society

    Modern applications of machine learning in quantum sciences

    Get PDF
    In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning

    Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices

    Get PDF
    We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high-energy physics and beyond on noisy intermediate-scale quantum (NISQ) devices. The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits. The second method is an efficient mitigation of readout errors on quantum devices. Both methods can lead to significant improvements in quantum simulations, e.g. when variational quantum eigensolvers are used. This article is part of the theme issue 'Quantum technologies in particle physics'.</p
    corecore