54 research outputs found

    A new XRD method to quantify plate and lath martensites of hardened medium-carbon steel

    Get PDF
    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First of all, the two martensites are assumed to have body centre tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping (200) diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonisation of the as-quenched martensites. Keywords: Gaussian peak-fitting, martensite carbon content, martensite tetragonal ratio, medium-carbon steels, Xray diffractio

    Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels

    Full text link
    The effect of finish rolling temperature (FRT) on the austenite- () to-bainite () phase transformation is quantitatively investigated in high-strength C-Mn steels. In particular, the present study aims to clarify the respective contributions of the conditioning during the hot rolling and the variant selection (VS) during the phase transformation to the inherited texture. To this end, an alternative crystallographic reconstruction procedure, which can be directly applied to experimental electron backscatter diffraction (EBSD) mappings, is developed by combining the best features of the existing models: the orientation relationship (OR) refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. The applicability of this method is demonstrated on both quenching and partitioning (Q&P) and as-quenched lath-martensite steels. The results obtained on the C-Mn steels confirm that the sample finish rolled at the lowest temperature (829{\deg}C) exhibits the sharpest transformation texture. It is shown that this sharp texture is exclusively due to a strong VS from parent brass {110}, S {213} and Goss {110} grains, whereas the VS from the copper {112} grains is insensitive to the FRT. In addition, a statistical VS analysis proves that the habit planes of the selected variants do not systematically correspond to the predicted active slip planes using the Taylor model. In contrast, a correlation between the Bain group to which the selected variants belong and the FRT is clearly revealed, regardless of the parent orientation. These results are discussed in terms of polygranular accommodation mechanisms, especially in view of the observed development in the hot-rolled samples of high-angle grain boundaries with misorientation axes between and

    EBSD characterization of cryogenically rolled type 321 austenitic stainless steel

    Get PDF
    Electron backscatter diffraction was applied to investigate microstructure evolution during cryogenic rolling of type 321 metastable austenitic stainless steel. As expected, rolling promoted deformation-induced martensitic transformation which developed preferentially in deformation bands. Because a large fraction of the imposed strain was accommodated by deformation banding, grain refinement in the parent austenite phase was minimal. The martensitic transformation was found to follow a general orientation relationship, {111}γ||{0001}ε||{110}α′ and 〈110〉γ||〈11-20〉ε||〈111〉α′, and was characterized by noticeable variant selection

    Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel

    Get PDF
    The annealing behavior of cryogenically-rolled type 321 metastable austenitic steel was established. Cryogenic deformation gave rise to martensitic transformation which developed preferentially within deformation bands. Subsequent annealing in the range of 600 C to 700 C resulted in reversion of the strain-induced martensite to austenite. At 800 C, the reversion was followed by static recrystallization. At relatively-low temperatures, the reversion was characterized by a very strong variant selection, which led to the restoration of the crystallographic orientation of the coarse parent austenite grains. An increase in the annealing temperature relaxed the variant-selection tendency and provided subsequent recrystallization thus leading to significant grain refinement. Nevertheless, a significant portion of the original coarse grains was found to be untransformed and therefore the fine-grain structure was fairly heterogeneous

    Low Temperature Austenite Decomposition in Carbon Steels

    No full text
    Martensitic steels have become very important engineering materials in modern society. Crucial parts of everyday products are made of martensitic steels, from surgical needles and razor blades to car components and large-scale excavators. Martensite, which results from a rapid diffusionless phase transformation, has a complex nature that is challenging to characterize and to classify. Moreover the possibilities for modeling of this phase transformation have been limited, since its thermodynamics and kinetics are only reasonably well understood. However, the recent development of characterization capabilities and computational techniques, such as CALPHAD, and its applicability to ferrous martensite has not been fully explored yet. In the present work, a thermodynamic method for predicting the martensite start temperature (Ms) of commercial steels is developed. It is based mainly on information on Ms from binary Fe-X systems obtained from experiments using very rapid cooling, and Ms values for lath and plate martensite are treated separately. Comparison with the experimental Ms of several sets of commercial steels indicates that the predictive ability is comparable to models based on experimental information of Ms from commercial steels. A major part of the present work is dedicated to the effect of carbon content on the morphological transition from lath- to plate martensite in steels. A range of metallographic techniques were employed: (1) Optical microscopy to study the apparent morphology; (2) Transmission electron microscopy to study high-carbon plate martensite; (3) Electron backscattered diffraction to study the variant pairing tendency of martensite. The results indicate that a good understanding of the martensitic microstructure can be achieved by combining qualitative metallography with quantitative analysis, such as variant pairing analysis. This type of characterization methodology could easily be extended to any alloying system and may thus facilitate martensite characterization in general. Finally, a minor part addresses inverse bainite, which may form in high-carbon alloys. Its coupling to regular bainite is discussed on the basis of symmetry in the Fe-C phase diagram.  QC 20120824Hero-

    Preliminary study: Barkhausen noise evaluation on the Hardening Depth of Induction-hardened carbon steel

    No full text
    Induction hardening depth evaluation by means of Barkhausen noise (BN) technique is one known non-destructive evaluation (NDE). The acquired signal, nevertheless, is not easy to be interpreted owing to information and materials complexity. Current study is initiated from a case in local industry about the quality control of induction hardened camshaft. Certain historical BN data is reviewed, and hypothetical hardening conditions are simulated in order to find out a possible relationship between the acquired signal and the microstructure of the hardened layer. Selected physical properties of these simulated hardened layers were evaluated. Using these data, physical modelling was developed by means of finite element method (FEM). A magnetising unit is modelled and the induced magnetic flux density in the material is simulated. Modelling results were then compared with experimental study. The project work is at the preliminary stage and it is expected that the ultimate model will help to improve the understanding of the BN signal in relations to the induction-hardened depth evaluation

    Evolution of Martensite Tetragonality in High-Carbon Steels Revealed by In Situ High-Energy X-Ray Diffraction

    No full text
    The martensitic transformation was studied by in situ and ex situ experiments in two high-carbon, 0.54 and 0.74 wt pct C, steels applying three different cooling rates, 15 °C/s, 5 °C/s, and 0.5 °C/s, in the temperature range around Ms, to improve the understanding of the evolution of martensite tetragonality c/a and phase fraction formed during the transformation. The combination of in situ high-energy X-ray diffraction during controlled cooling and spatially resolved tetragonality c/a determination by electron backscatter diffraction pattern matching was used to study the transformation behavior. The cooling rate and the different Ms for the steels had a clear impact on the martensitic transformation with a decrease in average tetragonality due to stronger autotempering for a decreasing cooling rate and higher Ms. A slower cooling rate also resulted in a lower fraction of martensite at room temperature, but with an increase in fraction of autotempered martensite. Additionally, a heterogeneous distribution of martensite tetragonality was observed for all cooling rates
    • …
    corecore