214 research outputs found
Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture
Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture
Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture
Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of
anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating
more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a
hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in
a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2
incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility
is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the
functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic
function) when compared to standard 2-dimensional tissue culture
Mathematical modelling of a liver hollow fibre bioreactor
A mathematical model has been developed to assist with the development of a hollow fibre bioreactor (HFB) for hepatotoxicity testing of xenobiotics; specifically, to inform the HFB operating set-up, interpret data from HFB outputs and aid in optimizing HFB design to mimic certain hepatic physiological conditions. Additionally, the mathematical model has been used to identify the key HFB and compound parameters that will affect xenobiotic clearance. The analysis of this model has produced novel results that allow the operating set-up to be calculated, and predictions of compound clearance to be generated. The mathematical model predicts the inlet oxygen concentration and volumetric flow rate that gives a physiological oxygen gradient in the HFB to mimic a liver sinusoid. It has also been used to predict the concentration gradients and clearance of a test drug and paradigm hepatotoxin, paracetamol (APAP). The effect of altering the HFB dimensions and fibre properties on APAP clearance under the condition of a physiological oxygen gradient is analysed. These theoretical predictions can be used to design the most appropriate experimental set up and data analysis to quantitatively compare the functionality of cell types that are cultured within the HFB to those in other systems
Enhanced reaction kinetics in biological cells
The cell cytoskeleton is a striking example of "active" medium driven
out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to
have a spectacular impact on the mechanical and rheological properties of the
cellular medium, as well as on its transport properties : a generic tracer
particle freely diffuses as in a standard equilibrium medium, but also
intermittently binds with random interaction times to motor proteins, which
perform active ballistic excursions along cytoskeletal filaments. Here, we
propose for the first time an analytical model of transport limited reactions
in active media, and show quantitatively how active transport can enhance
reactivity for large enough tracers like vesicles. We derive analytically the
average interaction time with motor proteins which optimizes the reaction rate,
and reveal remarkable universal features of the optimal configuration. We
discuss why active transport may be beneficial in various biological examples:
cell cytoskeleton, membranes and lamellipodia, and tubular structures like
axons.Comment: 10 pages, 2 figure
Molecular motors robustly drive active gels to a critically connected state
Living systems often exhibit internal driving: active, molecular processes
drive nonequilibrium phenomena such as metabolism or migration. Active gels
constitute a fascinating class of internally driven matter, where molecular
motors exert localized stresses inside polymer networks. There is evidence that
network crosslinking is required to allow motors to induce macroscopic
contraction. Yet a quantitative understanding of how network connectivity
enables contraction is lacking. Here we show experimentally that myosin motors
contract crosslinked actin polymer networks to clusters with a scale-free size
distribution. This critical behavior occurs over an unexpectedly broad range of
crosslink concentrations. To understand this robustness, we develop a
quantitative model of contractile networks that takes into account network
restructuring: motors reduce connectivity by forcing crosslinks to unbind.
Paradoxically, to coordinate global contractions, motor activity should be low.
Otherwise, motors drive initially well-connected networks to a critical state
where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages,
8 figure
β-Amyloid 25-35 Peptide Reduces the Expression of Glutamine Transporter SAT1 in Cultured Cortical Neurons
β-Amyloid (Aβ) peptides may cause malfunction and death of neurons in Alzheimer’s disease. We investigated the effect of Aβ on key transporters of amino acid neurotransmission in cells cultured from rat cerebral cortex. The cultures were treated with Aβ(25-35) at 3 and 10 μM for 12 and 24 h followed by quantitative analysis of immunofluorescence intensity. In mixed neuronal–glial cell cultures (from P1 rats), Aβ reduced the concentration of system A glutamine transporter 1 (SAT1), by up to 50% expressed relative to the neuronal marker microtubule-associated protein 2 (MAP2) in the same cell. No significant effects were detected on vesicular glutamate transporters VGLUT1 or VGLUT2 in neurons, or on glial system N glutamine transporter 1 (SN1). In neuronal cell cultures (from E18 rats), Aβ(25-35) did not reduce SAT1 immunoreactivity, suggesting that the observed effect depends on the presence of astroglia. The results indicate that Aβ may impair neuronal function and transmitter synthesis, and perhaps reduce excitotoxicity, through a reduction in neuronal glutamine uptake
Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs), exhibiting properties similar to those of embryonic stem cells (ESCs), has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K) signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors
Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine
Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base
Evaluating Ortholog Prediction Algorithms in a Yeast Model Clade
RSD, respectively, so that
they can predict orthologs across multiple taxa) against a set of 2,723
groups of high-quality curated orthologs from 6 Saccharomycete yeasts in the
Yeast Gene Order Browser. of all algorithms dramatically increased in these traps.) for evolutionary and functional
genomics studies where the objective is the accurate inference of
single-copy orthologs (e.g., molecular phylogenetics), but that all
algorithms fail to accurately predict orthologs when paralogy is
rampant
- …