970 research outputs found

    Recently Integrated Alu Elements In Capuchin Monkeys: A Resource For Cebus/Sapajus Genomics

    Get PDF
    Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae family. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. Reported here are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships

    Responsibility modelling for civil emergency planning

    Get PDF
    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans

    Recovery, Visualization, and Analysis of Actin and Tubulin Polymer Flow in Live Cells: A Fluorescent Speckle Microscopy Study

    Get PDF
    Fluorescent speckle microscopy (FSM) is becoming the technique of choice for analyzing in vivo the dynamics of polymer assemblies, such as the cytoskeleton. The massive amount of data produced by this method calls for computational approaches to recover the quantities of interest; namely, the polymerization and depolymerization activities and the motions undergone by the cytoskeleton over time. Attempts toward this goal have been hampered by the limited signal-to-noise ratio of typical FSM data, by the constant appearance and disappearance of speckles due to polymer turnover, and by the presence of flow singularities characteristic of many cytoskeletal polymer assemblies. To deal with these problems, we present a particle-based method for tracking fluorescent speckles in time-lapse FSM image series, based on ideas from operational research and graph theory. Our software delivers the displacements of thousands of speckles between consecutive frames, taking into account that speckles may appear and disappear. In this article we exploit this information to recover the speckle flow field. First, the software is tested on synthetic data to validate our methods. We then apply it to mapping filamentous actin retrograde flow at the front edge of migrating newt lung epithelial cells. Our results confirm findings from previously published kymograph analyses and manual tracking of such FSM data and illustrate the power of automated tracking for generating complete and quantitative flow measurements. Third, we analyze microtubule poleward flux in mitotic metaphase spindles assembled in Xenopus egg extracts, bringing new insight into the dynamics of microtubule assemblies in this system

    Cisternal Organization of the Endoplasmic Reticulum during Mitosis

    Get PDF
    The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules

    Recently Integrated \u3cem\u3eAlu\u3c/em\u3e Elements in Capuchin Monkeys: A Resource for \u3cem\u3eCebus\u3c/em\u3e/\u3cem\u3eSapajus\u3c/em\u3e Genomics

    Get PDF
    Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae fam-ily. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phy-logenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. There are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships

    Nonmyeloablative Unrelated Donor Hematopoietic Cell Transplantation to Treat Patients with Poor-Risk, Relapsed, or Refractory Multiple Myeloma

    Get PDF
    AbstractThe purpose of this study was to determine long-term outcome of unrelated donor nonmyeloablative hematopoietic cell transplantation (HCT) in patients with poor-risk multiple myeloma. A total of 24 patients were enrolled; 17 patients (71%) had chemotherapy-refractory disease, and 14 (58%) experienced disease relapse or progression after previous autologous transplantation. Thirteen patients underwent planned autologous transplantation followed 43–135 days later with unrelated transplantation, whereas 11 proceeded directly to unrelated transplantation. All 24 patients were treated with fludarabine (90 mg/m2) and 2 Gy of total body irradiation before HLA-matched unrelated peripheral blood stem cell transplantation. Postgrafting immunosuppression consisted of cyclosporine and mycophenolate mofetil. The median follow-up was 3 years after allografting. One patient experienced nonfatal graft rejection. The incidences of acute grades II and III and chronic graft-versus-host disease were 54%, 13%, and 75%, respectively. The 3-year nonrelapse mortality (NRM) was 21%. Complete responses were observed in 10 patients (42%); partial responses, in 4 (17%). At 3 years, overall survival (OS) and progression-free survival (PFS) rates were 61% and 33%, respectively. Patients receiving tandem autologous-unrelated transplantation had superior OS and PFS (77% and 51%) compared with patients proceeding directly to unrelated donor transplantation (44% and 11%) (PFS P value = .03). In summary, for patients with poor-risk, relapsed, or refractory multiple myeloma, cytoreductive autologous HCT followed by nonmyeloablative conditioning and unrelated HCT is an effective treatment approach, with low NRM, high complete remission rates, and prolonged disease-free survival

    Marrow transplants from unrelated donors for patients with aplastic anemia: Minimum effective dose of total body irradiation

    Get PDF
    AbstractPatients with aplastic anemia who do not have suitably HLA-matched, related donors generally receive immunosuppressive treatment as first-line therapy and are considered for transplantation from an unrelated donor only if they fail to respond to immunosuppressive treatment. In this setting, rates of transplantation-related morbidity and mortality have been high. We conducted a prospective study to determine the minimal dose of total body irradiation (TBI) sufficient to achieve sustained engraftment when it is used in combination with 3 cycles of 30 mg/kg of antithymocyte globulin (ATG) and 4 cycles of 50 mg/kg of cyclophosphamide (CY). We also wanted to determine the tolerability and toxicity of the regimen. The starting dosage of TBI was 3 x 200 cGy given over 2 days following CY/ATG. The TBI dose was to be escalated in increments of 200 cGy if graft failure occurred in the absence of prohibitive toxicity, and de-escalated for toxicity in the absence of graft failure. Twenty-one female and 29 male patients aged 1.3 to 46.5 years (median age, 14.4 years) underwent transplantation at 14 medical centers. The time interval from diagnosis to transplantation was 2.8 to 264 months (median, 14.5 months). All patients had been transfused multiple times and all had received 1 to 11 courses (median, 4 courses) of immunosuppressive treatment and other modalities of treatment. In 38 cases, the donors were HLA-A, -B and -DR phenotypically matched with the patients, and, in 12 cases, the donor phenotype differed from that of the recipient by 1 HLA antigen. Recipients of mismatched transplants were considered separately for TBI dose modification, and this study is still ongoing. Seven patients did not tolerate ATG and were prepared with 6 x 200 cGy of TBI plus 120 mg/kg of CY. Of the HLA-matched recipients prepared with CY/ATG/TBI, all 20 who received 3 x 200 or 2 x 200 cGy of TBI achieved engraftment, and 10 are alive. Of the 13 patients who received 1 x 200 cGy of TBI, 1 failed to engraft, and 8 are alive. Each of 10 patients who received an HLA-nonidentical transplant achieved engraftment, and 3 of 6 who were given 3 x 200 cGy of TBI, and 4 of 4 who were given 2 x 200 cGy are alive. Pulmonary toxicity occurred in 8 of 30 patients who were given 3 x 200 or 2 x 200 cGy of TBI concurrently with ATG and CY at 200 mg/kg, and in 2 of 13 patients who received 1 x 200 cGy of TBI, a pattern that suggests a decrease in toxicity with TBI dose de-escalation. Overall, the highest probability of survival (73%) was observed among patients who underwent transplantation within 1 year of diagnosis, compared with patients who underwent transplantation after a longer period of disease. In addition, younger patients (aged < or = 20 years) were more likely to survive than older patients (aged > 20 years). Thus, for patients with an HLA-matched, unrelated donor, a TBI dose of 200 cGy (in combination with CY/ATG) was sufficient to allow for engraftment without inducing prohibitive toxicity. As in previous studies, patient age and pretransplantation disease duration remain important prognostic factors.Biol Blood Marrow Transplant 2001;7(4):208-15
    • …
    corecore