10 research outputs found

    Stabilization and Incipient Carbonization of Electrospun Polyacrylonitrile Nanofibers Fixated on Aluminum Substrates

    Get PDF
    Storck JL, Grothe T, Tuvshinbayar K, et al. Stabilization and Incipient Carbonization of Electrospun Polyacrylonitrile Nanofibers Fixated on Aluminum Substrates. Fibers. 2020;8(9): 55.Polyacrylonitrile (PAN) nanofibers, prepared by electrospinning, are often used as a precursor for carbon nanofibers. The thermal carbonization process necessitates a preceding oxidative stabilization, which is usually performed thermally, i.e., by carefully heating the electrospun nanofibers in an oven. One of the typical problems occurring during this process is a strong deformation of the fiber morphologies—the fibers become thicker and shorter, and show partly undesired conglutinations. This problem can be solved by stretching the nanofiber mat during thermal treatment, which, on the other hand, can lead to breakage of the nanofiber mat. In a previous study, we have shown that the electrospinning of PAN on aluminum foils and the subsequent stabilization of this substrate is a simple method for retaining the fiber morphology without breaking the nanofiber mat. Here, we report on the impact of different aluminum foils on the physical and chemical properties of stabilized PAN nanofibers mats, and on the following incipient carbonization process at a temperature of max. 600 °C, i.e., below the melting temperature of aluminum

    Necessary Parameters of Vertically Mounted Textile Substrates for Successful Cultivation of Cress for Low-Budget Vertical Farming

    Get PDF
    A growing population needs an expansion of agriculture to ensure a reliable supply of nutritious food. As a variable concept, vertical farming, becoming increasingly popular, can allow plant growth for local food produc­tion in the vertical sense on, e.g. facades in addition to the classical layered structure in buildings. As substrates, textile fabrics can be used as a sustainable approach in terms of reusability. In our experiment, we investigated which properties a textile should possess in order to be suitable for an application in vertical farming by the example of cress seeds. To determine the best-fitted fabric, four different textiles were mounted vertically, and were provided with controlled irrigation and illumination. Our results showed that a hairy textile surface as provided by weft-knitted plush is advantageous. There, the rooting of cress plants used in this experiment is easier and less complicated than along tightly meshed, flat surfaces, as for woven linen fabrics

    Comparative Study of Metal Substrates for Improved Carbonization of Electrospun PAN Nanofibers

    No full text
    Carbon nanofibers are used for a broad range of applications, from nano-composites to energy storage devices. They are typically produced from electrospun poly(acrylonitrile) nanofibers by thermal stabilization and carbonization. The nanofiber mats are usually placed freely movable in an oven, which leads to relaxation of internal stress within the nanofibers, making them thicker and shorter. To preserve their pristine morphology they can be mechanically fixated, which may cause the nanofibers to break. In a previous study, we demonstrated that sandwiching the nanofiber mats between metal sheets retained their morphology during stabilization and incipient carbonization at 500 °C. Here, we present a comparative study of stainless steel, titanium, copper and silicon substrate sandwiches at carbonization temperatures of 500 °C, 800 °C and 1200 °C. Helium ion microscopy revealed that all metals mostly eliminated nanofiber deformation, whereas silicone achieved the best results in this regard. The highest temperatures for which the metals were shown to be applicable were 500 °C for silicon, 800 °C for stainless steel and copper, and 1200 °C for titanium. Fourier transform infrared and Raman spectroscopy revealed a higher degree of carbonization and increased crystallinity for higher temperatures, which was shown to depend on the substrate material

    Metallic Supports Accelerate Carbonization and Improve Morphological Stability of Polyacrylonitrile Nanofibers during Heat Treatment

    No full text
    Storck JL, Hellert C, Brockhagen B, et al. Metallic Supports Accelerate Carbonization and Improve Morphological Stability of Polyacrylonitrile Nanofibers during Heat Treatment. Materials. 2021;14(16): 4686.Electrospun poly(acrylonitrile) (PAN) nanofibers are typical precursors of carbon nanofibers. During stabilization and carbonization, however, the morphology of pristine PAN nanofibers is not retained if the as-spun nanofiber mats are treated without an external mechanical force, since internal stress tends to relax, causing the whole mats to shrink significantly, while the individual fibers thicken and curl. Stretching the nanofiber mats during thermal treatment, in contrast, can result in fractures due to inhomogeneous stress. Previous studies have shown that stabilization and carbonization of PAN nanofibers electrospun on an aluminum substrate are efficient methods to retain the fiber mat dimensions without macroscopic cracks during heat treatment. In this work, we studied different procedures of mechanical fixation via metallic substrates during thermal treatment. The influence of the metallic substrate material as well as different methods of double-sided covering of the fibers, i.e., sandwiching, were investigated. The results revealed that sandwich configurations with double-sided metallic supports not only facilitate optimal preservation of the original fiber morphology but also significantly accelerate the carbonization process. It was found that unlike regularly carbonized nanofibers, the metal supports allow complete deoxygenation at low treatment temperature and that the obtained carbon nanofibers exhibit increased crystallinity

    Outbreak of Chikungunya in the French Caribbean Islands of Martinique and Guadeloupe: Findings from a Hospital-Based Surveillance System (2013–2015): OUTBREAK OF CHIKUNGUNYA IN THE FRENCH CARIBBEAN ISLANDS

    No full text
    International audienceChikungunya virus (CHIKV) emerged in the Caribbean island of Saint-Martin in December 2013. Weimplemented a hospital-based surveillance system to detect and describe CHIKV cases including severe forms of theinfection and deaths in the islands of Martinique and Guadeloupe. A case was defined as a patient with a CHIKV laboratoryconfirmation cared for in a public hospital for chikungunya for at least 24 hours, and a severe CHIKV case was defined as aCHIKV case presenting one or more organ failures. Sociodemographic, clinical, and laboratory data were collected andcases classified into severe or nonsevere based on medical records. From December 2013 to January 2015, a total of1,836 hospitalized cases were identified. Rate of hospital admissions for CHIKV infection was 60 per 10,000 suspectedclinical CHIKV cases and severity accounted for 12 per 10,000. A total of 74 deaths related to CHIKV infection occurred.Infants and elderly people were more frequently hospitalized compared with others and severity was more frequentlyreported in elderly subjects and subjects with underlying health condition. Fifteen neonatal infections consecutive tomother-to-child transmission were diagnosed, seven of which were severe. The most vulnerable groups of the population,such as the elderly, infants, individuals with comorbidities, and pregnant women, should remain the main targets of publichealth priorities
    corecore