55 research outputs found

    Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basal-like carcinoma are aggressive breast cancers that frequently carry p53 inactivating mutations, lack estrogen receptor-α (ERα) and express the cancer stem cell markers CD133 and CD44. These tumors also over-express Interleukin 6 (IL-6), a pro-inflammatory cytokine that stimulates the growth of breast cancer stem/progenitor cells.</p> <p>Results</p> <p>Here we show that p53 deficiency in breast cancer cells induces a loss of methylation at <it>IL-6 </it>proximal promoter region, which is maintained by an IL-6 autocrine loop. IL-6 also elicits the loss of methylation at the <it>CD133 </it>promoter region 1 and of <it>CD44 </it>proximal promoter, enhancing <it>CD133 </it>and <it>CD44 </it>gene transcription. In parallel, IL-6 induces the methylation of estrogen receptor (ERα) promoter and the loss of ERα mRNA expression. Finally, IL-6 induces the methylation of <it>IL-6 </it>distal promoter and of <it>CD133 </it>promoter region 2, which harbour putative repressor regions.</p> <p>Conclusion</p> <p>We conclude that IL-6, whose methylation-dependent autocrine loop is triggered by the inactivation of p53, induces an epigenetic reprogramming that drives breast carcinoma cells towards a basal-like/stem cell-like gene expression profile.</p

    TP53 drives abscopal effect by secretion of senescence-associated molecular signals in non small cell lung cancer

    Get PDF
    Background Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. Methods We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. Results We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. Conclusions In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors

    Intrabone transplant provides full stemness of cord blood stem cells with fast hematopoietic recovery and low GVHD rate: results from a prospective study

    Get PDF
    Umbilical Cord Blood (UCB) represents a valid option for patients with hematopoietic malignancies lacking an HLA matched donor. To overcome the limitation of the low stem cell dose of UCB, the intrabone (IB) route has been proposed. We report the results of a prospective study on a poor-prognosis cohort of 23 patients receiving intrabone single UCB transplant (Clinicaltrials.gov NCT00886522). Cumulative incidence of hematological recovery at day 90 was 82 ± 9% (ANC &gt; 0.5 × 109/L) and 70 ± 10% (platelet &gt; 50 × 109/L) and correlated with CD34 + cells in the graft. NRM was 20 ±  9%. No severe aGVHD and only one extensive cGVHD occurred, with fast immune reconstitution. To test the hypothesis that the direct IB injection could affect the expression of stem cells regulatory pathways, CD34 + cells from BM aspirates at day + 10, + 20, + 30, processed in hypoxic conditions mimicking the BM-microenvironment (7%pO2), were studied for the expression of c-Mpl, Notch1 and CXCR4. We found that the expression of c-Mpl in CD34 + cells at day + 10 significantly correlated with hematological recovery. In conclusion, IB-UCB transplant success is associated with low incidence of GVHD and high-speed platelet recovery; intrabone route may preserve full hematopoietic stemness by direct delivery of UCB stem cells into the hypoxic HSC niche

    Pre-transplant CD69+ extracellular vesicles are negatively correlated with active ATLG serum levels and associate with the onset of GVHD in allogeneic HSCT patients

    Get PDF
    Graft versus host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). Rabbit anti-T lymphocyte globulin (ATLG) in addition to calcineurin inhibitors and antimetabolites is a suitable strategy to prevent GVHD in several transplant settings. Randomized studies already demonstrated its efficacy in terms of GVHD prevention, although the effect on relapse remains the major concern for a wider use. Tailoring of ATLG dose on host characteristics is expected to minimize its side effects (immunological reconstitution, relapse, and infections). Here, day -6 to day +15 pharmacokinetics of active ATLG serum level was first assayed in an explorative cohort of 23 patients by testing the ability of the polyclonal serum to bind antigens on human leukocytes. Significantly lower levels of serum active ATLG were found in the patients who developed GVHD (ATLG_AUC(CD45): 241.52 +/- 152.16 vs. 766.63 +/- 283.52 (mu g*day)/ml, p = 1.46e(-5)). Consistent results were obtained when the ATLG binding capacity was assessed on CD3+ and CD3+/CD4+ T lymphocytes (ATLG_AUC(CD3): 335.83 +/- 208.15 vs. 903.54 +/- 378.78 (mu g*day)/ml, p = 1.92e(-4); ATLG_AUC(CD4): 317.75 +/- 170.70 vs. 910.54 +/- 353.35 (mu g*day)/ml, p = 3.78e(-5). Concomitantly, at pre-infusion time points, increased concentrations of CD69+ extracellular vesicles (EVs) were found in patients who developed GVHD (mean fold 9.01 +/- 1.33; p = 2.12e(-5)). Consistent results were obtained in a validation cohort of 12 additional ATLG-treated HSCT patients. Serum CD69+ EVs were mainly represented in the nano (i.e. 100 nm in diameter) EV compartment and expressed the leukocyte marker CD45, the EV markers CD9 and CD63, and CD103, a marker of tissue-resident memory T cells. The latter are expected to set up a host pro-inflammatory cell compartment that can survive in the recipient for years after conditioning regimen and contribute to GVHD pathogenesis. In summary, high levels of CD69+ EVs are significantly correlated with an increased risk of GVHD, and they may be proposed as a tool to tailor ATLG dose for personalized GVHD prevention

    Case report: Senescence as mechanism of resistance to Pembrolizumab in a Lymphoma patient who failed CD19-Targeted CAR-T cell therapy

    Get PDF
    BackgroundT cells engineered to target CD19 antigen on neoplastic B cells represent the most striking example of CAR-T cell therapy. The success rate of this therapy is affected by several limitations: target antigen loss, and/or acquisition of a senescent/exhausted phenotype by CAR and non-CAR T cells. Case presentationWe report on a patient affected by refractory Diffuse Large B-cell Lymphoma who was resistant to CAR T-cell therapy and to two cycles post CAR-T of pembrolizumab (PBZ) due to the evolution into a B-cell Hodgkin-like lymphoma. Owing to the CD30 expression and the Hodgkin-like phenotype, the patient was ultimately treated with Brentuximab-Vedotin and finally underwent remission. Upon PBZ treatment, 100% of circulating CAR-T+ cells showed a persistent CD8(+) senescent/exhausted phenotype, while an increase in the percentage of senescent cells was found in the non-CAR CD8(+) T cells compartment. ConclusionsPBZ is not able to reinvigorate exhausted CAR(+) T cells and to confer durable clinical response. We hypothesize that the phenomenon is due to the senescent phenotype of CAR(+) T cells, which did not allow PBZ-induced reactivation and proliferative rescue. The phenomenon, together with the loss of CAR-T target CD19 and the shift of non-CAR CD8(+) T cells towards a senescent phenotype likely contributed to set up an immune landscape with poor antitumor capacity

    NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia associated with alterations in carbohydrate, lipid, and protein metabolism. The prognosis of T2DM patients is highly dependent on the development of complications, and therefore the identification of biomarkers of T2DM progression, with minimally invasive techniques, is a huge need. In the present study, we applied a H-1-Nuclear Magnetic Resonance (H-1-NMR)-based metabolomic approach coupled with multivariate data analysis to identify serum metabolite profiles associated with T2DM development and progression. To perform this, we compared the serum metabolome of non-diabetic subjects, treatment-naive non-complicated T2DM patients, and T2DM patients with complications in insulin monotherapy. Our analysis revealed a significant reduction of alanine, glutamine, glutamate, leucine, lysine, methionine, tyrosine, and phenylalanine in T2DM patients with respect to non-diabetic subjects. Moreover, isoleucine, leucine, lysine, tyrosine, and valine levels distinguished complicated patients from patients without complications. Overall, the metabolic pathway analysis suggested that branched-chain amino acid (BCAA) metabolism is significantly compromised in T2DM patients with complications, while perturbation in the metabolism of gluconeogenic amino acids other than BCAAs characterizes both early and advanced T2DM stages. In conclusion, we identified a metabolic serum signature associated with T2DM stages. These data could be integrated with clinical characteristics to build a composite T2DM/complications risk score to be validated in a prospective cohort

    Peripheral blood cellular profile at pre-lymphodepletion is associated with CD19-targeted CAR-T cell-associated neurotoxicity

    Get PDF
    BackgroundInfusion of second generation autologous CD19-targeted chimeric antigen receptor (CAR) T cells in patients with R/R relapsed/refractory B-cell lymphoma (BCL) is affected by inflammatory complications, such as Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS). Current literature suggests that the immune profile prior to CAR-T infusion modifies the chance to develop ICANS.MethodsThis is a monocenter prospective study on 53 patients receiving approved CAR T-cell products (29 axi-cel, 24 tisa-cel) for R/R-BCL. Clinical, biochemical, and hematological variables were analyzed at the time of pre-lymphodepletion (pre-LD). In a subset of 21 patients whose fresh peripheral blood sample was available, we performed cytofluorimetric analysis of leukocytes and extracellular vesicles (EVs). Moreover, we assessed a panel of soluble plasma biomarkers (IL-6/IL-10/GDF-15/IL-15/CXCL9/NfL) and microRNAs (miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p) which are associated with senescence and inflammation.ResultsMultivariate analysis at the pre-LD time-point in the entire cohort (n=53) showed that a lower percentage of CD3+CD8+ lymphocytes (38.6% vs 46.8%, OR=0.937 [95% CI: 0.882-0.996], p=0.035) and higher levels of serum C-reactive protein (CRP, 4.52 mg/dl vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-28], p=0.005) are associated with ICANS. In the pre-LD samples of 21 patients, a significant increase in the percentage of CD8+CD45RA+CD57+ senescent cells (median % value: 16.50% vs 9.10%, p=0.009) and monocytic-myeloid derived suppressor cells (M-MDSC, median % value: 4.4 vs 1.8, p=0.020) was found in ICANS patients. These latter also showed increased levels of EVs carrying CD14+ and CD45+ myeloid markers, of the myeloid chemokine CXCL-9, as well of the MDSC-secreted cytokine IL-10. Notably, the serum levels of circulating neurofilament light chain, a marker of neuroaxonal injury, were positively correlated with the levels of senescent CD8+ T cells, M-MDSC, IL-10 and CXCL-9. No variation in the levels of the selected miRNAs was observed between ICANS and no-ICANS patients.DiscussionOur data support the notion that pre-CAR-T systemic inflammation is associated with ICANS. Higher proportion of senescence CD8+ T cells and M-MDSC correlate with early signs of neuroaxonal injury at pre-LD time-point, suggesting that ICANS may be the final event of a process that begins before CAR-T infusion, consequence to patient clinical history

    Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging

    No full text
    Inflamm-aging depicts the progressive activation of the innate immune system that accompanies human aging. Its role as a disease-predisposing condition has been proposed, but its molecular basis is still poorly understood. A wealth of literature conveys that, particularly upon stress, nuclear and mitochondrial genomes are released into the cytoplasmic and extracellular compartments. Cytoplasmic (cy) and cell-free (cf) DNA pools trigger inflammation and innate immunity at local and systemic level. In particular, cyDNA plays a crucial role in the phenomenon of cell senescence and in the cognate pro-inflammatory secretome. Here we propose that changes in a variety of biochemical characteristics \u201ctastes\u201d of cy- and cf-DNA (e.g. the amount of 8-oxo-deoxy-guanosine and 5-methyl-deoxy-cytosine, the proportion of DNA hybridized with RNA) potentially affect the capability of these DNA pools to ignite the innate immune system. We also underpin that telomeric sequences are major components of the cy/cfDNA payload. Telomere shortening, a hallmark of aging, causes the depletion of telomeric sequences in cy/cfDNA pool, thus unleashing their potential to exert an age-related activation of the innate immune system. Finally, we posit that various sources of DNA (extracellular vesicles, the commensal metagenome and food) contribute to the cy/cfDNA payloads. We speculate that changes in the biochemical \u201ctaste\u201d of cy/cfDNA are major modifiers of inflamm-aging

    The role of extracellular DNA in COVID-19: clues from inflamm-aging

    No full text
    Epidemiological data convey severe prognosis and high mortality rate for COVID-19 in elderly men affected by age-related diseases. These subjects develop local and systemic hyper-inflammation, which are associated with thrombotic complications and multi-organ failure. Therefore, understanding SARS-CoV-2 induced hyper-inflammation in elderly men is a pressing need. Here we focus on the role of extracellular DNA, mainly mitochondrial DNA (mtDNA) and telomeric DNA (telDNA) in the modulation of systemic inflammation in these subjects. In particular, extracellular mtDNA is regarded as a powerful trigger of the inflammatory response. On the contrary, extracellular telDNA pool is estimated to be capable of inhibiting a variety of inflammatory pathways. In turn, we underpin that telDNA reservoir is progressively depleted during aging, and that it is scarcer in men than in women. We propose that an increase in extracellular mtDNA, concomitant with the reduction of the anti-inflammatory telDNA reservoir may explain hyper-inflammation in elderly male affected by COVID-19. This scenario is reminiscent of inflamm-aging, the portmanteau word that depicts how aging and aging related diseases are intimately linked to inflammation
    corecore