2,472 research outputs found
The Emergence of El-Ni\~{n}o as an Autonomous Component in the Climate Network
We construct and analyze a climate network which represents the
interdependent structure of the climate in different geographical zones and
find that the network responds in a unique way to El-Ni\~{n}o events. Analyzing
the dynamics of the climate network shows that when El-Ni\~{n}o events begin,
the El-Ni\~{n}o basin partially loses its influence on its surroundings. After
typically three months, this influence is restored while the basin loses almost
all dependence on its surroundings and becomes \textit{autonomous}. The
formation of an autonomous basin is the missing link to understand the
seemingly contradicting phenomena of the afore--noticed weakening of the
interdependencies in the climate network during El-Ni\~{n}o and the known
impact of the anomalies inside the El-Ni\~{n}o basin on the global climate
system.Comment: 5 pages,10 figure
Speech Prosody Across Stimulus Types for Individuals with Parkinson's Disease
Up to 89% of the individuals with Parkinson's disease (PD) experience speech problem over the course of the disease. Speech prosody and intelligibility are two of the most affected areas in hypokinetic dysarthria. However, assessment of these areas could potentially be problematic as speech prosody and intelligibility could be affected by the type of speech materials employed. Objective: To comparatively explore the effects of different types of speech stimulus on speech prosody and intelligibility in PD speakers. Methods: Speech prosody and intelligibility of two groups of individuals with varying degree of dysarthria resulting from PD was compared to that of a group of control speakers using sentence reading, passage reading and monologue. Acoustic analysis including measures on fundamental frequency (F0), intensity and speech rate was used to form a prosodic profile for each individual. Speech intelligibility was measured for the speakers with dysarthria using direct magnitude estimation. Results: Difference in F0 variability between the speakers with dysarthria and control speakers was only observed in sentence reading task. Difference in the average intensity level was observed for speakers with mild dysarthria to that of the control speakers. Additionally, there were stimulus effect on both intelligibility and prosodic profile. Conclusions: The prosodic profile of PD speakers was different from that of the control speakers in the more structured task, and lower intelligibility was found in less structured task. This highlighted the value of both structured and natural stimulus to evaluate speech production in PD speakers. 2015-IOS Press and the authors.casl5pub3998pub
The backbone of the climate network
We propose a method to reconstruct and analyze a complex network from data
generated by a spatio-temporal dynamical system, relying on the nonlinear
mutual information of time series analysis and betweenness centrality of
complex network theory. We show, that this approach reveals a rich internal
structure in complex climate networks constructed from reanalysis and model
surface air temperature data. Our novel method uncovers peculiar wave-like
structures of high energy flow, that we relate to global surface ocean
currents. This points to a major role of the oceanic surface circulation in
coupling and stabilizing the global temperature field in the long term mean
(140 years for the model run and 60 years for reanalysis data). We find that
these results cannot be obtained using classical linear methods of multivariate
data analysis, and have ensured their robustness by intensive significance
testing.Comment: 6 pages, 5 figure
Renormalization group theory for finite-size scaling in extreme statistics
We present a renormalization group (RG) approach to explain universal
features of extreme statistics, applied here to independent, identically
distributed variables. The outlines of the theory have been described in a
previous Letter, the main result being that finite-size shape corrections to
the limit distribution can be obtained from a linearization of the RG
transformation near a fixed point, leading to the computation of stable
perturbations as eigenfunctions. Here we show details of the RG theory which
exhibit remarkable similarities to the RG known in statistical physics. Besides
the fixed points explaining universality, and the least stable eigendirections
accounting for convergence rates and shape corrections, the similarities
include marginally stable perturbations which turn out to be generic for the
Fisher-Tippett-Gumbel class. Distribution functions containing unstable
perturbations are also considered. We find that, after a transitory divergence,
they return to the universal fixed line at the same or at a different point
depending on the type of perturbation.Comment: 15 pages, 8 figures, to appear in Phys. Rev.
On the Role of Global Warming on the Statistics of Record-Breaking Temperatures
We theoretically study long-term trends in the statistics of record-breaking
daily temperatures and validate these predictions using Monte Carlo simulations
and data from the city of Philadelphia, for which 126 years of daily
temperature data is available. Using extreme statistics, we derive the number
and the magnitude of record temperature events, based on the observed Gaussian
daily temperatures distribution in Philadelphia, as a function of the number of
elapsed years from the start of the data. We further consider the case of
global warming, where the mean temperature systematically increases with time.
We argue that the current warming rate is insufficient to measurably influence
the frequency of record temperature events over the time range of the
observations, a conclusion that is supported by numerical simulations and the
Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to
Journal of Climate. Revised version has some new results and some errors
corrected. Reformatted for Journal of Climate. Second revision has an added
reference. In the third revision one sentence that explains the simulations
is reworded for clarity. New revision 10/3/06 has considerable additions and
new results. Revision on 11/8/06 contains a number of minor corrections and
is the version that will appear in Phys. Rev.
Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation
Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses (NCLs). Here we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct NCL disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared to controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease
Surface flux drivers for the slowdown of the Atlantic Meridional Overturning Circulation in a high resolution global coupled climate model
This paper investigates the causation for the decline of the Atlantic Meridional Overturning Circulation (AMOC) from approximately 17 Sv to about 9 Sv, when the atmospheric resolution of the Max Planck Institute-Earth System Model is enhanced from ∼1° to ∼0.5°. The results show that the slowdown of the AMOC is caused by the cessation of deep convection. In most modeling studies, this is thought to be controlled by buoyancy fluxes in the convective regions, for example, by surface freshwater flux that is introduced locally or via enormous input from glacier or iceberg melts. While we find that freshwater is still the key to the reduction of AMOC seen in the higher-resolution run, the freshening of the North Atlantic does not need to be directly caused by local freshwater fluxes. Instead, it can be caused indirectly through winds via a reduced wind-driven gyre circulation and salinity transport associated to this circulation, as seen in the higher-resolution run. © 2019. The Authors
- …