54 research outputs found

    5Îą-reduction of epitestosterone is catalysed by human SRD5A1 and SRD5A2 and increases androgen receptor transactivation

    Get PDF
    Epitestosterone is a stereoisomer of the active androgen testosterone and its circulating concentrations are similar to those of testosterone in women and children. However, its biological function and pathways of metabolism remain unknown. The structural similarity to testosterone suggests a potential function in the modulation of androgen receptor signalling. It is well established that the conversion of testosterone to 5Îą-dihydrotestosterone enhances local androgen receptor signalling. In this study, we show that epitestosterone is metabolized to 5Îą-dihydroepitestosterone by both human steroid 5Îą-reductase isoforms, SRD5A1 and SRD5A2. Using two different variations of a reporter assay for transactivation of the human androgen receptor, we show that epitestosterone is a partial AR agonist and that the 5Îą-reduction of epitestosterone increases its androgenic activity. In line with this, we show that 5Îą-reduction of epitestosterone reduces its ability to antagonize 5Îą-dihydrotestosterone-induced androgen receptor transactivation. In conclusion, we provide evidence that steroid 5Îą-reductases regulate the modulatory effect of epitestosterone on androgen receptor signalling.</p

    Data comparing the separation and elution of vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometer (UPSFC-MS/MS) compared to liquid chromatography (LC) and data presenting approaches to UPSFC method optimization

    Get PDF
    The data presented is related to the research article “Analysis of multiple vitamin D metabolites by ultra performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS)” (Jenkinson et al., 2018) [1]. This article will include data obtained from method development, optimization and analysis of multiple vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometry (UPSFC-MS/MS). This includes chromatograms from column screening to confirm the most suitable column for analyte separation. Additionally, further chromatograms and figures compare separation and analyte signal strength during the optimization of other UPSFC parameters. Mass spectra will demonstrate the optimization of MS conditions for the UPSFC-MS/MS method. Chromatogram data from UHPLC vitamin D analysis is also presented in order to compare the separation and elution of vitamin D metabolites using UPSFC and UHPLC. This data will highlight the outputs that aid in method development and identifying the separation technique suited for vitamin D quantitation. Keywords: Vitamin D, Method development, UPSFC-MS/MS, LC-MS/M

    11-oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome

    Get PDF
    Abstract Context: Androgen excess is a defining feature of polycystic ovary syndrome (PCOS), but the exact origin of hyperandrogenemia remains a matter of debate. Recent studies have highlighted the importance of the 11-oxygenated C19 steroid pathway to androgen metabolism in humans. In this study, we analyzed the contribution of 11-oxygenated androgens to androgen excess in women with PCOS. Methods: One hundred fourteen women with PCOS and 49 healthy control subjects underwent measurement of serum androgens by liquid chromatography-tandem mass spectrometry. Twenty-four–hour urinary androgen excretion was analyzed by gas chromatography-mass spectrometry. Fasting plasma insulin and glucose were measured for homeostatic model assessment of insulin resistance. Baseline demographic data, including body mass index, were recorded. Results: As expected, serum concentrations of the classic androgens testosterone (P &amp;lt; 0.001), androstenedione (P &amp;lt; 0.001), and dehydroepiandrosterone (P &amp;lt; 0.01) were significantly increased in PCOS. Mirroring this, serum 11-oxygenated androgens 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone were significantly higher in PCOS than in control subjects, as was the urinary 11-oxygenated androgen metabolite 11β-hydroxyandrosterone. The proportionate contribution of 11-oxygenated to total serum androgens was significantly higher in patients with PCOS compared with control subjects [53.0% (interquartile range, 48.7 to 60.3) vs 44.0% (interquartile range, 32.9 to 54.9); P &amp;lt; 0.0001]. Obese (n = 51) and nonobese (n = 63) patients with PCOS had significantly increased 11-oxygenated androgens. Serum 11β-hydroxyandrostenedione and 11-ketoandrostenedione correlated significantly with markers of insulin resistance. Conclusions: We show that 11-oxygenated androgens represent the majority of circulating androgens in women with PCOS, with close correlation to markers of metabolic risk. </jats:sec

    Inhibition of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 drives concurrent 11‐oxygenated androgen excess

    Get PDF
    Aldo‐keto reductase 1C3 (AKR1C3) is a key enzyme in the activation of both classic and 11‐oxygenated androgens. In adipose tissue, AKR1C3 is co‐expressed with 11β‐hydroxysteroid dehydrogenase type 1 (HSD11B1), which catalyzes not only the local activation of glucocorticoids but also the inactivation of 11‐oxygenated androgens, and thus has the potential to counteract AKR1C3. Using a combination of in vitro assays and in silico modeling we show that HSD11B1 attenuates the biosynthesis of the potent 11‐oxygenated androgen, 11‐ketotestosterone (11KT), by AKR1C3. Employing ex vivo incubations of human female adipose tissue samples we show that inhibition of HSD11B1 results in the increased peripheral biosynthesis of 11KT. Moreover, circulating 11KT increased 2–3 fold in individuals with type 2 diabetes after receiving the selective oral HSD11B1 inhibitor AZD4017 for 35 days, thus confirming that HSD11B1 inhibition results in systemic increases in 11KT concentrations. Our findings show that HSD11B1 protects against excess 11KT production by adipose tissue, a finding of particular significance when considering the evidence for adverse metabolic effects of androgens in women. Therefore, when targeting glucocorticoid activation by HSD11B1 inhibitor treatment in women, the consequently increased generation of 11KT may offset beneficial effects of decreased glucocorticoid activation

    Differential activity and expression of human 5β-reductase (AKR1D1) splice variants

    Get PDF
    Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5beta-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were over-expressed in HEK293 cells, and successful overexpression confirmed by qPCR and western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following over-expression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action

    The influence of dual CYP17 expression on adrenal steroidogenesis in the South African Angora Goat

    Get PDF
    Thesis (PhD (Biochemistry))--Stellenbosch University, 2008.This study describes: • the cloning and sequencing of cytochrome P450 17 -hydroxylase/17,20 lyase (CYP17), 3 -hydroxysteroid dehydrogenase (3 HSD) and cytochrome b5 from the South African Angora goat; • the identification of two CYP17 genes encoding two unique CYP17 isoforms in the Angora goat; • the development of a UPLC-APCI-LC method for the separation and quantification of seven adrenal steroids; • the characterisation of the enzymatic activity of the two Angora CYP17 isoforms expressed in non-steroidogenic COS-1 cells. The Km and Vvalues for the metabolism of pregnenolone and progesterone were determined; • the development of a rapid and accurate real-time PCR genotyping test for CYP17 in Angora goats. Three unique genotypes were identified; • the determination of blood cortisol levels upon the stimulation of the HPAaxis by intravenous insulin injection in the three Angora goat genotypes
    • …
    corecore