432 research outputs found

    Exercises in equivariant cohomology

    Get PDF
    Equivariant cohomology is a mathematical framework particularly well adapted to a kinematical understanding of topological gauge theories of the cohomological type. It also sheds some light on gauge fixing, a necessary field theory operation connected with the non compactness of the gauge group. The respective roles of fields and observables are emphasized throughout.Equivariant cohomology is a mathematical framework particularly well adapted to a kinematical understanding of topological gauge theories of the cohomological type. It also sheds some light on gauge fixing, a necessary field theory operation connected with the non compactness of the gauge group. The respective roles of fields and observables are emphasized throughout

    BRST Cohomology of N=2 Super-Yang-Mills Theory in 4D

    Full text link
    The BRST cohomology of the N=2 supersymmetric Yang-Mills theory in four dimensions is discussed by making use of the twisted version of the N=2 algebra. By the introduction of a set of suitable constant ghosts associated to the generators of N=2, the quantization of the model can be done by taking into account both gauge invariance and supersymmetry. In particular, we show how the twisted N=2 algebra can be used to obtain in a straightforward way the relevant cohomology classes. Moreover, we shall be able to establish a very useful relationship between the local gauge invariant polynomial trϕ2tr\phi^2 and the complete N=2 Yang-Mills action. This important relation can be considered as the first step towards a fully algebraic proof of the one-loop exactness of the N=2 beta function.Comment: 22 pages, LaTeX, final version to appear in Journ. Phys.

    Generalized Born--Infeld Actions and Projective Cubic Curves

    Full text link
    We investigate U(1)nU(1)^{\,n} supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties.Comment: 17 pages, LaTeX, 1 eps figure. Comments added and misprints corrected. Final version to appear in Fortschritte der Physik - Progress of Physic

    Perturbative Gravity in the Causal Approach

    Full text link
    Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory. We prove gauge invariance and renormalizability in the second order of perturbation theory for the pure gravity system (massless and massive). Then we investigate the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian.Comment: 50 pages, no figures, some changes in the last sectio

    Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes

    Full text link
    We propose additional conditions (beyond those considered in our previous papers) that should be imposed on Wick products and time-ordered products of a free quantum scalar field in curved spacetime. These conditions arise from a simple ``Principle of Perturbative Agreement'': For interaction Lagrangians L1L_1 that are such that the interacting field theory can be constructed exactly--as occurs when L1L_1 is a ``pure divergence'' or when L1L_1 is at most quadratic in the field and contains no more than two derivatives--then time-ordered products must be defined so that the perturbative solution for interacting fields obtained from the Bogoliubov formula agrees with the exact solution. The conditions derived from this principle include a version of the Leibniz rule (or ``action Ward identity'') and a condition on time-ordered products that contain a factor of the free field ϕ\phi or the free stress-energy tensor TabT_{ab}. The main results of our paper are (1) a proof that in spacetime dimensions greater than 2, our new conditions can be consistently imposed in addition to our previously considered conditions and (2) a proof that, if they are imposed, then for {\em any} polynomial interaction Lagrangian L1L_1 (with no restriction on the number of derivatives appearing in L1L_1), the stress-energy tensor Θab\Theta_{ab} of the interacting theory will be conserved. Our work thereby establishes (in the context of perturbation theory) the conservation of stress-energy for an arbitrary interacting scalar field in curved spacetimes of dimension greater than 2. Our approach requires us to view time-ordered products as maps taking classical field expressions into the quantum field algebra rather than as maps taking Wick polynomials of the quantum field into the quantum field algebra.Comment: 88 pages, latex, no figures, v2: changes in the proof of proposition 3.

    Quantum Field Theory and Differential Geometry

    Full text link
    We introduce the historical development and physical idea behind topological Yang-Mills theory and explain how a physical framework describing subatomic physics can be used as a tool to study differential geometry. Further, we emphasize that this phenomenon demonstrates that the interrelation between physics and mathematics have come into a new stage.Comment: 29 pages, enlarged version, some typewritten mistakes have been corrected, the geometric descrition to BRST symmetry, the chain of descent equations and its application in TYM as well as an introduction to R-symmetry have been added, as required by mathematicia

    Exact Chiral Symmetry on the Lattice

    Get PDF
    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.Comment: 30 pages, LaTeX, reference adde

    Algebraic Classification of Weyl Anomalies in Arbitrary Dimensions

    Full text link
    Conformally invariant massless field systems involving only dimensionless parameters are known to describe particle physics at very high energy. In the presence of an external gravitational field, the conformal symmetry may generalize to Weyl invariance. However, the latter symmetry no longer survives after quantization: A Weyl anomaly appears. In this Letter, a purely algebraic understanding of the universal structure of the Weyl anomalies is presented. The results hold in arbitrary dimensions and independently of any regularization scheme.Comment: 4 pages - accepted for publication in Physical Review Letter

    Algebraic Properties of BRST Coupled Doublets

    Get PDF
    We characterize the dependence on doublets of the cohomology of an arbitrary nilpotent differential s (including BRST differentials and classical linearized Slavnov-Taylor (ST) operators) in terms of the cohomology of the doublets-independent component of s. All cohomologies are computed in the space of local integrated formal power series. We drop the usual assumption that the counting operator for the doublets commutes with s (decoupled doublets) and discuss the general case where the counting operator does not commute with s (coupled doublets). The results are purely algebraic and do not rely on power-counting arguments.Comment: Some explanations enlarged, references adde
    corecore