46 research outputs found

    Covalent binding of reactive estrogen metabolites to microtubular protein as a possible mechanism of aneuploidy induction and neoplastic cell transformation.

    Get PDF
    Neoplastic cell transformation induced by estrogens and some other carcinogens such as benzene appears to involve the induction of mitotic aneuploidy rather than DNA damage and point mutations. As metabolic activation may also play an important role in the mechanism of carcinogenesis of these nongenotoxic compounds, we have studied the interaction of reactive quinone metabolites of various estrogens and of benzene with the major microtubular protein, tubulin, in a cell-free system. Covalent binding of the radioactively labeled metabolites to the alpha- and beta-subunit of tubulin was found to depend on the structure of the metabolite. When the adducted tubulins were tested in vitro for their ability to polymerize to microtubules, inhibition of microtubule assembly was observed in every case, although to varying extents. It is proposed that the formation of covalent tubulin adducts may impair the formation of mitotic spindles and thus contribute to chromosomal nondisjunction and aneuploidy induction

    Radiosensitivity in breast cancer assessed by the Comet and micronucleus assays

    Get PDF
    Spontaneous and radiation-induced genetic instability of peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=50) was examined using the single-cell gel electrophoresis (Comet) assay and a modified G2 micronucleus (MN) test. Cells from apparently healthy donors (n=16) and from cancer patients (n=9) with an adverse early skin reaction to radiotherapy (RT) served as references. Nonirradiated cells from the three tested groups exhibited similar baseline levels of DNA fragmentation assessed by the Comet assay. Likewise, the Comet analysis of in vitro irradiated (5 Gy) cells did not reveal any significant differences among the three groups with respect to the initial and residual DNA fragmentation, as well as the DNA repair kinetics. The G2 MN test showed that cells from cancer patients with an adverse skin reaction to RT displayed increased frequencies of both spontaneous and radiation-induced MN compared to healthy control or the group of unselected BC patients. Two patients from the latter group developed an increased early skin reaction to RT, which was associated with an increased initial DNA fragmentation in vitro only in one of them. Cells from the other BC patient exhibited a striking slope in the dose–response curve detected by the G2 MN test. We also found that previous RT strongly increased both spontaneous and in vitro radiation-induced MN levels, and to a lesser extent, the radiation-induced DNA damage assessed by the Comet assay. These data suggest that clinical radiation may provoke genetic instability and/or induce persistent DNA damage in normal cells of cancer patients, thus leading to increased levels of MN induction and DNA fragmentation after irradiation in vitro. Therefore, care has to be taken when blood samples collected postradiotherapeutically are used to assess the radiosensitivity of cancer patients

    Increased efficiency of transfection of murine hybridoma cells with DNA by electropermeabilization

    Get PDF
    Dispase-treated murine hybridoma cells (SP2/0-Ag14) were transfected with the G418 resistance gene bearing plasmid pSV2-neo by electropermeabilization with a high degree of efficiency. The cells were subjected to intermittent multiple high-voltage short duration (5 p.s) DC pulses at intervals of 1 min in a weakly conducting medium followed by selection in G418-containing medium. The transfection medium, temperature, pulse duration, and voltage were empirically determined by preliminary electropermeabilization experiments. Increasing the number of pulses resulted in a higher percentage of transfected cells, but a decrease in the number of viable cells, with the optimal transfectant yield resulting when five pulses of 10 kV jcm were administered. This method allows the rapid and efficient injection of DNA into mammalian cells, and permits the rapid production of stable, drug resistant hybridoma celllines for use in subsequent fusion experiments

    Large scale transfection of mouse L-cells by electropermeabilization

    Get PDF
    Mouse L-cells were transfected by electropenneabilization using the selectable plasmid pSV2-neo which confers resistance to G-418 (Geneticin). 1be DNA concentration used was 1 l'gfml, the field strength was 10 kV fcm, the duration of the pulse was S ~s. Transfeetion yield was optimal at a temperature of 4°C when using a time in between consecutive pulses of 1 minute compared to shorter (of the order of seoonds) or Ionger (3 minutes) time intervals. A more detailed study of the relationship between the number of pulses applied (up to 10) and transfection yield showed it to be almost linear in this range at 4 o C. The yield of transfectants in response to 10 pulses was up to 1000 per 106 cells (using 3.3 pg DNA per cell). The inßuence of the growth phase of the cells on the transfection yield and I or the subpopulation of the mouse L--ceU line used was shown. Furthennore the clone yield depended on the DNA per ceU ratio within a very small range
    corecore