420 research outputs found

    Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots

    Full text link
    We study the electronic structure of a single self-assembled InAs quantum dot by probing elastic single-electron tunneling through a single pair of weakly coupled dots. In the region below pinch-off voltage, the non-linear threshold voltage behavior provides electronic addition energies exactly as the linear, Coulomb blockade oscillation does. By analyzing it, we identify the s and p shell addition spectrum for up to six electrons in the single InAs dot, i.e. one of the coupled dots. The evolution of shell addition spectrum with magnetic field provides Fock-Darwin spectra of s and p shell.Comment: 7 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Wigner Crystallization in a Quasi-3D Electronic System

    Full text link
    When a strong magnetic field is applied perpendicularly (along z) to a sheet confining electrons to two dimensions (x-y), highly correlated states emerge as a result of the interplay between electron-electron interactions, confinement and disorder. These so-called fractional quantum Hall (FQH) liquids form a series of states which ultimately give way to a periodic electron solid that crystallizes at high magnetic fields. This quantum phase of electrons has been identified previously as a disorder-pinned two-dimensional Wigner crystal with broken translational symmetry in the x-y plane. Here, we report our discovery of a new insulating quantum phase of electrons when a very high magnetic field, up to 45T, is applied in a geometry parallel (y-direction) to the two-dimensional electron sheet. Our data point towards this new quantum phase being an electron solid in a "quasi-3D" configuration induced by orbital coupling with the parallel field

    Measurement of the Luminosity in the ZEUS Experiment at HERA II

    Full text link
    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.Comment: 25 pages, 11 figure

    Coulomb blockade conductance peak fluctuations in quantum dots and the independent particle model

    Full text link
    We study the combined effect of finite temperature, underlying classical dynamics, and deformations on the statistical properties of Coulomb blockade conductance peaks in quantum dots. These effects are considered in the context of the single-particle plus constant-interaction theory of the Coulomb blockade. We present numerical studies of two chaotic models, representative of different mean-field potentials: a parametric random Hamiltonian and the smooth stadium. In addition, we study conductance fluctuations for different integrable confining potentials. For temperatures smaller than the mean level spacing, our results indicate that the peak height distribution is nearly always in good agreement with the available experimental data, irrespective of the confining potential (integrable or chaotic). We find that the peak bunching effect seen in the experiments is reproduced in the theoretical models under certain special conditions. Although the independent particle model fails, in general, to explain quantitatively the short-range part of the peak height correlations observed experimentally, we argue that it allows for an understanding of the long-range part.Comment: RevTex 3.1, 34 pages (including 13 EPS and PS figures), submitted to Phys. Rev.

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Combined QCD and electroweak analysis of HERA data

    Full text link
    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections from proofing process and small change to Fig. 12 and Table

    Limits on the effective quark radius from inclusive epep scattering at HERA

    Get PDF
    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current epep scattering corresponding to a luminosity of around 1 fb1^{-1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive epep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.4310160.43\cdot 10^{-16} cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.

    Search for a narrow baryonic state decaying to pKS0{pK^0_S} and pˉKS0{\bar{p}K^0_S} in deep inelastic scattering at HERA

    Get PDF
    A search for a narrow baryonic state in the pKS0pK^0_S and pˉKS0\bar{p}K^0_S system has been performed in epep collisions at HERA with the ZEUS detector using an integrated luminosity of 358 pb1^{-1} taken in 2003-2007. The search was performed with deep inelastic scattering events at an epep centre-of-mass energy of 318 GeV for exchanged photon virtuality, Q2Q^2, between 20 and 100 GeV2\rm{} GeV^{2}. Contrary to evidence presented for such a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb1^{-1} taken in 1996-2000, no resonance peak was found in the p(pˉ)KS0p(\bar{p})K^0_S invariant-mass distribution in the range 1.45-1.7 GeV. Upper limits on the production cross section are set.Comment: 16 pages, 4 figures, accepted by Phys. Lett. B. Minor changes from journal reviewing process, including a small correction to figure
    corecore