542 research outputs found

    Atom-molecule theory of broad Feshbach resonances

    Full text link
    We derive the atom-molecule theory for an atomic gas near a broad Feshbach resonance, where the energy dependence of the atom-molecule coupling becomes crucial for understanding experimental results. We show how our many-body theory incorporates the two-atom physics exactly. In particular, we calculate the magnetic moment of a two-component gas of ^{6}Li atoms for a wide range of magnetic fields near the broad Feshbach resonance at about 834 Gauss. We find excellent agreement with the experiment of Jochim et al. [Phys. Rev. Lett. 91, 240402 (2003)].Comment: 4 pages, 2 figure

    Growth and Collapse of a Bose Condensate with Attractive Interactions

    Full text link
    We consider the dynamics of a quantum degenerate trapped gas of Li-7 atoms. Because the atoms have a negative s-wave scattering length, a Bose condensate of Li-7 becomes mechanically unstable when the number of condensate atoms approaches a maximum value. We calculate the dynamics of the collapse that occurs when the unstable point is reached. In addition, we use the quantum Boltzmann equation to investigate the nonequilibrium kinetics of the atomic distribution during and after evaporative cooling. The condensate is found to undergo many cycles of growth and collapse before a stationary state is reached.Comment: Four pages of ReVTeX with four postscript figure

    Spin drag in an ultracold Fermi gas on the verge of a ferromagnetic instability

    Get PDF
    Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.Comment: 4 pages, 3 fig

    Spin-Seebeck effect in a strongly interacting Fermi gas

    Full text link
    We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering

    Crossover temperature of Bose-Einstein condensation in an atomic Fermi gas

    Full text link
    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the crossover temperature as a function of the applied magnetic field and find excellent agreement with the experiment of Regal et al. [Phys. Rev. Lett. 92, 040403 (2004)] that has recently observed this crossover temperature.Comment: 4 pages, 2 figure

    Low energy monopole Modes of a Trapped atomic Fermi Gas

    Full text link
    We consider the low energy collective monopole modes of a trapped weakly interacting atomic Fermi gas in the collisionless regime. The spectrum is calculated for varying coupling strength and chemical potential. Using an effective Hamiltonian, we derive analytical results that agree well with numerical calculations in various regimes. The onset of superfluidity is shown to lead to effects such as the vanishing of the energy required to create a Cooper molecule at a critical coupling strength and to the emergence of pair vibration excitations. Our analysis suggests ways to experimentally detect the presence of the superfluid phase in trapped atomic Fermi gases.Comment: 5 pages & 1 figure. Accepted for Phys. Rev. Let

    Twin peaks in rf spectra of Fermi gases at unitarity

    Full text link
    We calculate the radio-frequency spectrum of balanced and imbalanced ultracold Fermi gases in the normal phase at unitarity. For the homogeneous case the spectrum of both the majority and minority components always has a single peak even in the pseudogap regime. We furthermore show how the double-peak structures observed in recent experiments arise due to the inhomogeneity of the trapped gas. The main experimental features observed above the critical temperature in the recent experiment of Schunck et al. [Science 316, 867, (2007)] are recovered with no fitting parameters.Comment: v3: version accepted for publication as a Rapid Communication in PRA. With respect to v2, minor changes in the text and in the inset of Fig.

    Deformation of a Trapped Fermi Gas with Unequal Spin Populations

    Full text link
    The real-space densities of a polarized strongly-interacting two-component Fermi gas of 6^6Li atoms reveal two low temperature regimes, both with a fully-paired core. At the lowest temperatures, the unpolarized core deforms with increasing polarization. Sharp boundaries between the core and the excess unpaired atoms are consistent with a phase separation driven by a first-order phase transition. In contrast, at higher temperatures the core does not deform but remains unpolarized up to a critical polarization. The boundaries are not sharp in this case, indicating a partially-polarized shell between the core and the unpaired atoms. The temperature dependence is consistent with a tricritical point in the phase diagram.Comment: Accepted for publication in Physical Review Letter

    Bright soliton trains of trapped Bose-Einstein condensates

    Full text link
    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.Comment: 4 pages, 2 figures, submitted to PR
    • …
    corecore