133 research outputs found

    Stellar substructures in the solar neighbourhood. III. Kinematic group 2 in the Geneva-Copenhagen survey

    Full text link
    From correlations between orbital parameters, several new coherent groups of stars were recently identified in the Galactic disc and suggested to correspond to remnants of disrupted satellites. To reconstruct their origin at least three main observational parameters - kinematics, chemical composition and age - must be known. We determine detailed elemental abundances in stars belonging to the so-called Group 2 of the Geneva-Copenhagen Survey and compare the chemical composition with Galactic thin- and thick-disc stars, as well as with the Arcturus and AF06 streams. The aim is to search for chemical signatures that might give information about the formation history of this kinematic group of stars. High-resolution spectra were obtained with the FIES spectrograph at the Nordic Optical Telescope, La Palma, and were analysed with a differential model atmosphere method. Comparison stars were observed and analysed with the same method. The average value of [Fe/H] for the 32 stars of Group 2 is -0.42 +- 0.10 dex. The investigated group consists mainly of two 8- and 12-Gyr-old stellar populations. Abundances of oxygen, alpha-elements, and r-process-dominated elements are higher than in Galactic thin-disc dwarfs. This elemental abundance pattern has similar characteristics as that of the Galactic thick-disc. The similarity in chemical composition of stars in Group 2 with that in stars of the thick-disc might suggest that their formation histories are linked. The chemical composition together with the kinematic properties and ages of stars in the investigated stars provides evidence of their common origin and possible relation to an ancient merging event. A gas-rich satellite merger scenario is proposed as the most likely origin. Groups 2 and 3 of the Geneva-Copenhagen Survey might have originated in the same merging event.Comment: 17 pages, 13 figures, accepted for publication in Astronomy & Astrophysics, 201

    Stellar substructures in the solar neighbourhood IV. Kinematic Group 1 in the Geneva-Copenhagen survey

    Full text link
    We determine detailed elemental abundances in stars belonging to the so-called Group 1 of the Geneva-Copenhagen survey (GCS) and compare the chemical composition with the Galactic thin- and thick-disc stars, with the GCS Group 2 and Group 3 stars, as well as with several kinematic streams of similar metallicities. The aim is to search for chemical signatures that might give information about the formation history of this kinematic group of stars. High-resolution spectra were obtained with the Fibre-fed Echelle Spectrograph (FIES) spectrograph at the Nordic Optical Telescope, La Palma, and were analysed with a differential model atmosphere method. Comparison stars were observed and analysed with the same method. The average value of [Fe/H] for the 37 stars of Group 1 is -0.20 +- 0.14 dex. Investigated Group 1 stars can be separated into three age subgroups. Along with the main 8- and 12-Gyr-old populations, a subgroup of stars younger than 5 Gyr can be separated as well. Abundances of oxygen, alpha-elements, and r-process dominated elements are higher than in Galactic thin-disc dwarfs. This elemental abundance pattern has similar characteristics to that of the Galactic thick disc and differs slightly from those in Hercules, Arcturus, and AF06 stellar streams. The similar chemical composition of stars in Group 1, as well as in Group 2 and 3, with that in stars of the thick disc might suggest that their formation histories are linked. The chemical composition pattern together with the kinematic properties and ages of stars in the investigated GCS groups provide evidence of their common origin and possible relation to an ancient merging event. A gas-rich satellite merger scenario is proposed as the most likely origin.Comment: 17 pages, 13 figures, accepted for publication in Astronomy & Astrophysics, 201

    Stellar substructures in the solar neighbourhood. II. Abundances of neutron-capture elements in the kinematic Group 3 of the Geneva-Copenhagen survey

    Full text link
    The evolution of chemical elements in a galaxy is linked to its star formation history. Variations in star formation history are imprinted in the relative abundances of chemical elements produced in different supernova events and asymptotic giant branch stars. We determine detailed elemental abundances of s- and r-process elements in stars belonging to Group3 of the Geneva-Copenhagen survey and compare their chemical composition with Galactic disc stars. The aim is to look for possible chemical signatures that might give information about the formation history of this kinematic group of stars, which is suggested to correspond to remnants of disrupted satellites. High-resolution spectra were obtained with the FIES spectrograph at the Nordic Optical Telescope, La Palma, and were analysed with a differential model atmosphere method. Comparison stars were observed and analysed with the same method. Abundances of chemical elements produced mainly by the s-process are similar to those in the Galactic thin-disc dwarfs of the same metallicity, while abundances of chemical elements produced predominantly by the r-process are overabundant. The similar elemental abundances are observed in Galactic thick-disc stars. The chemical composition together with the kinematic properties and ages of stars in Group3 of the Geneva-Copenhagen survey support a gas-rich satellite merger scenario as the most likely explanation for the origin. The similar chemical composition of stars in Group3 and the thick-disc stars might suggest that their formation histories are linked.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysics, 2013. arXiv admin note: text overlap with arXiv:1203.619

    Discovery of the most isolated globular cluster in the local universe

    Full text link
    We report the discovery of two new globular clusters in the remote halos of M81 and M82 in the M81 Group based on Hubble Space Telescope archive images. They are brighter than typical globular clusters (MV = -9.34 mag for GC-1 and M_V = -10.51 mag for GC-2), and much larger than known globular clusters with similar luminosity in the MilkyWay Galaxy and M81. Radial surface brightness profiles for GC-1 and GC-2 do not show any features of tidal truncation in the outer part. They are located much farther from both M81 and M82 in the sky, compared with previously known star clusters in these galaxies. Color-magnitude diagrams of resolved stars in each cluster show a well-defined red giant branch (RGB), indicating that they are metal-poor and old. We derive a low metallicity with [Fe/H] 2.3\simeq -2.3 and an old age ~14 Gyr for GC-2 from the analysis of the absorption lines in its spectrum in the Sloan Digital Sky Survey in comparison with the simple stellar population models. The I-band magnitude of the tip of the RGB for GC-2 is 0.26 mag fainter than that for the halo stars in the same field, showing that GC-2 is ~400 kpc behind the M81 halo along our line of sight. The deprojected distance to GC-2 from M81 is much larger than any other known globular clusters in the local universe. This shows that GC-2 is the most isolated globular cluster in the local universe.Comment: 6 pages with 5 figure

    Compact Star Clusters in the M31 Disk

    Full text link
    We have carried out a survey of compact star clusters (apparent size <3 arcsec) in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.5 arcmin x 28.5 arcmin), covering ~15% of the deprojected galaxy disk area. The UBVRI photometry of 285 cluster candidates (V < 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r_h ~ 1.5 pc), was selected by specifying a lower limit of r_h > 0.15 arcsec (>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from ~5 Myr (young objects associated with 24 um and/or Ha emission) to ~10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 < log(m/M_sol) < 4.3 peaking at m ~ 4000 M_sol. Typical age of these intermediate-mass clusters is in the range of 30 Myr < t < 3 Gyr, with a prominent peak at ~70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.Comment: 16 pages, 8 figures, 1 table, accepted for publication in Ap
    corecore