142 research outputs found
Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer
<p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p>
<p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p>
<p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p>
Fragment reattachment, reproductive status, and health indicators of the invasive colonial tunicate Didemnum vexillum with implications for dispersal
This manuscript is not subject to U.S. copyright. The definitive version was published in Biological Invasions 14 (2012): 2133-2140, doi:10.1007/s10530-012-0219-8.The invasive colonial tunicate Didemnum vexillum is now widespread in coastal and offshore waters of New England, USA. D. vexillum can inflict ecological and economic damage through biofouling and habitat modification. Natural and anthropogenic processes that fragment colonies of D. vexillum may be accelerating the spread of this invader. Reattachment success and fragment viability were confirmed in the laboratory after four weeks of suspension in experimental aquaria. The shape of suspended D. vexillum fragments progressed from flattened to globular spheres and then flattened again after reattachment to the substrate. Reproductive activity, confirmed by the presence of eggs and larvae, was observed for fragments suspended up to three weeks suggesting that D. vexillum is capable of reproducing while in a fragmented, suspended state. An index of colony health was used to monitor change in D. vexillum health while in suspension. Overall, colony health declined with time in suspension although colonies that appeared dead (black and gray in overall color) still contained a substantial number of healthy live zooids. These results suggest that activities that cause fragmentation can significantly facilitate the spread of D. vexillum. Coastal managers should consider reducing or eliminating, when practical, activities that return fragmented colonies of D. vexillum to the water. In-water cleaning of biofouling and dredging are likely expediting the spread of this invasive species unless biofouling can be contained and removed from the water.This research was funded by the NOAA Aquatic Invasive Species Program
A Phase 1 Randomized, Double Blind, Placebo Controlled Rectal Safety and Acceptability Study of Tenofovir 1% Gel (MTN-007)
Objective: Rectal microbicides are needed to reduce the risk of HIV acquisition associated with unprotected receptive anal intercourse. The MTN-007 study was designed to assess the safety (general and mucosal), adherence, and acceptability of a new reduced glycerin formulation of tenofovir 1% gel. Methods: Participants were randomized 1:1:1:1 to receive the reduced glycerin formulation of tenofovir 1% gel, a hydroxyethyl cellulose placebo gel, a 2% nonoxynol-9 gel, or no treatment. Each gel was administered as a single dose followed by 7 daily doses. Mucosal safety evaluation included histology, fecal calprotectin, epithelial sloughing, cytokine expression (mRNA and protein), microarrays, flow cytometry of mucosal T cell phenotype, and rectal microflora. Acceptability and adherence were determined by computer-administered questionnaires and interactive telephone response, respectively. Results: Sixty-five participants (45 men and 20 women) were recruited into the study. There were no significant differences between the numbers of ≥ Grade 2 adverse events across the arms of the study. Likelihood of future product use (acceptability) was 87% (reduced glycerin formulation of tenofovir 1% gel), 93% (hydroxyethyl cellulose placebo gel), and 63% (nonoxynol-9 gel). Fecal calprotectin, rectal microflora, and epithelial sloughing did not differ by treatment arms during the study. Suggestive evidence of differences was seen in histology, mucosal gene expression, protein expression, and T cell phenotype. These changes were mostly confined to comparisons between the nonoxynol-9 gel and other study arms. Conclusions: The reduced glycerin formulation of tenofovir 1% gel was safe and well tolerated rectally and should be advanced to Phase 2 development. Trial Registration: ClinicalTrials.gov NCT01232803
On the Role of Attention in Binocular Rivalry: Electrophysiological Evidence
During binocular rivalry visual consciousness fluctuates between two dissimilar monocular images. We investigated the role of attention in this phenomenon by comparing event-related potentials (ERPs) when binocular-rivalry stimuli were attended with when they were unattended. Stimuli were dichoptic, orthogonal gratings that yielded binocular rivalry and dioptic, identically oriented gratings that yielded binocular fusion. Events were all possible orthogonal changes in orientation of one or both gratings. We had two attention conditions: In the attend-to-grating condition, participants had to report changes in perceived orientation, focussing their attention on the gratings. In the attend-to-fixation condition participants had to report changes in a central fixation target, taking attention away from the gratings. We found, surprisingly, that attending to rival gratings yielded a smaller ERP component (the N1, from 160–210 ms) than attending to the fixation target. To explain this paradoxical effect of attention, we propose that rivalry occurs in the attend-to-fixation condition (we found an ERP signature of rivalry in the form of a sustained negativity from 210–300 ms) but that the mechanism processing the stimulus changes is more adapted in the attend-to-grating condition than in the attend-to-fixation condition. This is consistent with the theory that adaptation gives rise to changes of visual consciousness during binocular rivalry
Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian, China
BACKGROUND: Continuous exposure to various environmental carcinogens and genetic polymorphisms of xenobiotic-metabolizing enzymes (XME) are associated with many types of human cancers, including esophageal squamous cell carcinoma (ESCC). Huaian, China, is one of the endemic regions of ESCC, but fewer studies have been done in characterizing the risk factors of ESCC in this area. The aims of this study is to evaluate the etiological roles of demographic parameters, environmental and food-borne carcinogens exposure, and XME polymorphisms in formation of ESCC, and to investigate possible gene-gene and gene-environment interactions associated with ESCC in Huaian, China. METHODS: A population based case-control study was conducted in 107 ESCC newly diagnosed cases and 107 residency- age-, and sex-matched controls in 5 townships of Huaian. In addition to regular epidemiological and food frequency questionnaire analyses, genetic polymorphisms of phase I enzymes CYP1A1, CYP1B1, CYP2A6, and CYP2E1, and phase II enzymes GSTM1, GSTT1, GSTP1, and microsomal epoxide hydrolase (EPHX) were assessed from genomic DNA using PCR based techniques. RESULTS: Consuming acrid food, fatty meat, moldy food, salted and pickled vegetables, eating fast, introverted personality, passive smoking, a family history of cancer, esophageal lesion, and infection with Helicobacter pylori were significant risk factors for ESCC (P < 0.05). Regular clean up of food storage utensils, green tea consumption, and alcohol abstinence were protective factors for ESCC (P < 0.01). The frequency of the GSTT1 null genotype was higher in cases (59.4%) compared to controls (47.2%) with an odds ratio (OR) of 1.68 and 95% confidence interval (CI) from 0.96 to 2.97 (P = 0.07), especially in males (OR = 2.78; 95% CI = 1.22–6.25; P = 0.01). No associations were found between polymorphisms of CYP1A1, CYP1B1, CYP2A6, CYP2E1, GSTM1, GSTP1, and EPHX and ESCC (P > 0.05). CONCLUSION: Our results demonstrated that dietary and environmental exposures, some demographic parameters and genetic polymorphism of GSTT1 may play important roles in the development of ESCC in Huaian area, China
Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code
Background: The suppression of amber stop codons with non-canonical amino acids (ncAAs) is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS)/amber suppressor tRNA CUA pairs (o-pairs) for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNACUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid. Methodology/Principal Findings: We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs. Conclusions/Significance: O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detaile
Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction
Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship
- …