90 research outputs found

    Holocene Sediment Magnetic Properties Along a Transect from Isafjardardjup to Djupall, Northwest Iceland

    Full text link
    Holocene changes in terrestrial provenance and processes of sediment transport and deposition are tracked along a fjord-to-shelf transect adjacent to Vestfirdir, Iceland, using the magnetic properties ofmarine sediments.Magnetic susceptibility (MS) profiles of 10 cores (gravity and piston) were obtained onboard using a Bartington MS loop. Remanent magnetizations were measured at 1-cm intervals from u-channel samples taken from six cores on a cryogenic magnetometer. Between six and nine alternating field demagnetization steps were used to isolate the characteristic magnetization directions. The chronologies of the cores used in this study were determined from AMS14 C dates on mollusks and foraminifera and contrained by the regional occurrance ofthe 10,200 6 60 cal yr. BP Saksunavatn tepha. Correlative fluctuations in magneticconcentration are noted between the fjord and shelf sites, though these fluctuations are partiallymasked by regional variations in carbonate content. The onset of Neoglaciation is interpreted by changes in magnetic properties including an increase in mass magneticsusceptibility that began approximately 3000 cal yr. BP. The maximum angular deviation and the median destructive field (generally 20 mT) suggest that the natural remanent magnetization is carried by a coarse ferrimagnetite mineralogy, likely magnetite or titano-magnetite. Reproducible paleomagnetic inclination values are observed in several records, including a nearly vertical inclination around 8000 cal yr. BP, suggesting that the magnetic pole may have been proximal to Iceland, followed by an interval of much shallower inclination (6000–7000 cal yr. BP)

    Statistical Mechanics of Nonuniform Magnetization Reversal

    Full text link
    The magnetization reversal rate via thermal creation of soliton pairs in quasi-1D ferromagnetic systems is calculated. Such a model describes e.g. the time dependent coercivity of elongated particles as used in magnetic recording media. The energy barrier that has to be overcome by thermal fluctuations corresponds to a soliton-antisoliton pair whose size depends on the external field. In contrast to other models of first order phase transitions such as the phi^4 model, an analytical expression for this energy barrier is found for all values of the external field. The magnetization reversal rate is calculated using a functional Fokker-Planck description of the stochastic magnetization dynamics. Analytical results are obtained in the limits of small fields and fields close to the anisotropy field. In the former case the hard-axis anisotropy becomes effectively strong and the magnetization reversal rate is shown to reduce to the nucleation rate of soliton-antisoliton pairs in the overdamped double sine-Gordon model. The present theory therefore includes the nucleation rate of soliton-antisoliton pairs in the double sine-Gordon chain as a special case. These results demonstrate that for elongated particles, the experimentally observed coercivity is significantly lower than the value predicted by the standard theories of N\'eel and Brown.Comment: 21 pages RevTex 3.0 (twocolumn), 6 figures available on request, to appear in Phys Rev B, Dec (1994

    Persistent Spin Currents in Helimagnets

    Full text link
    We demonstrate that weak external magnetic fields generate dissipationless spin currents in the ground state of systems with spiral magnetic order. Our conclusions are based on phenomenological considerations and on microscopic mean-field theory calculations for an illustrative toy model. We speculate on possible applications of this effect in spintronic devices.Comment: 9 pages, 6 figures, updated version as published, Journal referenc

    Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification

    Full text link
    The search for tools to perform soil surveying faster and cheaper has led to the development of technological innovations such as remote sensing (RS) and the so-called spectral libraries in recent years. However, there are no studies which collate all the RS background to demonstrate how to use this technology for soil classification. The present study aims to describe a simple method of how to classify soils by the morphology of spectra associated with a quantitative view (400-2,500 nm). For this, we constructed three spectral libraries: (i) one for quantitative model performance; (ii) a second to function as the spectral patterns; and (iii) a third to serve as a validation stage. All samples had their chemical and granulometric attributes determined by laboratory analysis and prediction models were created based on soil spectra. The system is based on seven steps summarized as follows: i) interpretation of the spectral curve intensity; ii) observation of the general shape of curves; iii) evaluation of absorption features; iv) comparison of spectral curves between the same profile horizons; v) quantification of soil attributes by spectral library models; vi) comparison of a pre-existent spectral library with unknown profile spectra; vii) most probable soil classification. A soil cannot be classified from one spectral curve alone. The behavior between the horizons of a profile, however, was correlated with its classification. In fact, the validation showed 85 % accuracy between the Morphological Interpretation of Reflectance Spectrum (MIRS) method and the traditional classification, showing the importance and potential of a combination of descriptive and quantitative evaluations
    • 

    corecore