752 research outputs found

    A new approach for detecting low-level mutations in next-generation sequence data

    No full text

    Archaic mitochondrial DNA inserts in modern day nuclear genomes

    No full text
    Traces of interbreeding of Neanderthals and Denisovans with modern humans in the form of archaic DNA have been detected in the genomes of present-day human populations outside sub-Saharan Africa. Up to now, only nuclear archaic DNA has been detected in modern humans; we therefore attempted to identify archaic mitochondrial DNA (mtDNA) residing in modern human nuclear genomes as nuclear inserts of mitochondrial DNA (NUMTs)

    The genomic prehistory of peoples speaking Khoisan languages

    Get PDF
    Peoples speaking so-called Khoisan languages—that is, indigenous languages of southern Africa that do not belong to the Bantu family—are culturally and linguistically diverse. They comprise herders, hunter-gatherers as well as groups of mixed modes of subsistence, and their languages are classified into three distinct language families. This cultural and linguistic variation is mirrored by extensive genetic diversity. We here review the recent genomics literature and discuss the genetic evidence for a formerly wider geographic spread of peoples with Khoisan-related ancestry, for the deep divergence among populations speaking Khoisan languages overlaid by more recent gene flow among these groups and for the impact of admixture with immigrant food-producers in their prehistory

    Sharing of heteroplasmies between human liver lobes varies across the mtDNA genome

    No full text
    Mitochondrial DNA (mtDNA) heteroplasmy (intra-individual variation) varies among different human tissues and increases with age, suggesting that the majority of mtDNA heteroplasmies are acquired, rather than inherited. However, the extent to which heteroplasmic sites are shared across a tissue remains an open question. We therefore investigated heteroplasmy in two liver samples (one from each primary lobe) from 83 Europeans, sampled at autopsy. Minor allele frequencies (MAF) at heteroplasmic sites were significantly correlated between the two liver samples from an individual, with significantly more sharing of heteroplasmic sites in the control region than in the non-control region. We show that this increased sharing for the control region cannot be explained by recent mutations at just a few specific heteroplasmic sites or by the possible presence of 7S DNA. Moreover, we carried out simulations to show that there is significantly more sharing than would be predicted from random genetic drift from a common progenitor cell. We also observe a significant excess of non-synonymous vs. synonymous heteroplasmies in the protein-coding region, but significantly more sharing of synonymous heteroplasmies. These contrasting patterns for the control vs. the non-control region, and for non-synonymous vs. synonymous heteroplasmies, suggest that selection plays a role in heteroplasmy sharing

    Tasmanian Aborigines and DNA

    Get PDF
    The hyper-variable control region (HVI and HVII) of mitochondrial DNA (mtDNA) from Tasmanians with an unbroken, direct Tasmanian Aboriginal maternal lineage were DNA sequenced. The lineage dates back to the early 1800s, as evidenced by published family genealogies (Mollison 1978, Ryan 1981, Plomley 1966, 1971, 1987, 1990). Of the five distinct mtDNA haplotypes discovered, VI was found in living Tasmanian descendants traced back to a Port Phillip Aboriginal woman who lived with European sealers in Bass Strait. Haplotype T2 is two nucleotide transitions removed from 1/WD 2 of van Holst Pellekaan et al. 1998 and therefore related to this Australian mainland Aboriginal mtDNA haplotype. Vestiges of Tasmanian maternal mtDNA haplotypes from before white settlement, passing down through up to eight generations, still survive in Tasmania. The Tasmanian Aboriginal people are related and relatable to mainland Aboriginal people

    Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs

    No full text

    Genes, culture, and human evolution

    No full text

    Ancient DNA from Guam and the peopling of the Pacific

    Get PDF
    We know more about the settlement of Polynesia than we do about the settlement of the Mariana Islands in the western Pacific. There is debate over where people came from to get to the Marianas, with various lines of evidence pointing to the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago, and over how the ancestors of the present Mariana Islanders, the Chamorro, might be related to Polynesians. We analyzed ancient DNA from Guam from two skeletons dating to ˜2,200 y ago and found that their ancestry is linked to the Philippines. Moreover, they are closely related to early Lapita skeletons from Vanuatu and Tonga, suggesting that the early Mariana Islanders may have been involved in the colonization of Polynesia.Humans reached the Mariana Islands in the western Pacific by ˜3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ˜2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.All data used in this paper are in the main text or in the SI Appendix. The new data reported in this paper have been deposited in the European Nucleotide Archive, https://www.ebi.ac.uk/ena/browser/home (accession no. PRJEB40707)

    Genetic structure and affinities among tribal populations of southern India: a study of 24 autosomal DNA markers

    Get PDF
    We describe the genetic structure and affinities of five Dravidian-speaking tribal populations inhabiting the Nilgiri hills of Tamil Nadu, in south India, using 24 autosomal DNA markers. Our goals were: (i) to examine what evolutionary forces have most significantly impacted south Indian tribal genetic variation, and (ii) to test whether the phenotypic similarities of some south Indian tribal groups to Africans represent a signature of close relationship to Africans or are due to convergence. All loci were polymorphic and average heterozygosities were substantial (range: 0.347-0.423). Genetic differentiation was high (Gst= 6.7%) and genetic distances were not significantly correlated with geographic distances. Genetic drift therefore probably played a significant role in shaping the patterns of genetic variation observed in southern Indian tribal populations. Otherwise, analyses of population relationships showed that Indian populations are closely related to one another, regardless of phenotypic characteristics, and do not show particular affinities to Africans. We conclude that the phenotypic similarities of some Indian groups to Africans do not reflect a close relationship between these groups, but are better explained by convergence
    corecore