45,429 research outputs found

    Luttinger States at the Edge

    Full text link
    An effective wavefunction for the edge excitations in the Fractional quantum Hall effect can be found by dimensionally reducing the bulk wavefunction. Treated this way the Laughlin ν=1/(2n+1)\nu=1/(2n+1) wavefunction yields a Luttinger model ground state. We identify the edge-electron field with a Luttinger hyper-fermion operator, and the edge electron itself with a non-backscattering Bogoliubov quasi-particle. The edge-electron propagator may be calculated directly from the effective wavefunction using the properties of a one-dimensional one-component plasma, provided a prescription is adopted which is sensitive to the extra flux attached to the electrons

    A New Godunov Scheme for MHD, with Application to the MRI in disks

    Full text link
    We describe a new numerical scheme for MHD which combines a higher order Godunov method (PPM) with Constrained Transport. The results from a selection of multidimensional test problems are presented. The complete test suite used to validate the method, as well as implementations of the algorithm in both F90 and C, are available from the web. A fully three-dimensional version of the algorithm has been developed, and is being applied to a variety of astrophysical problems including the decay of supersonic MHD turbulence, the nonlinear evolution of the MHD Rayleigh-Taylor instability, and the saturation of the magnetorotational instability in the shearing box. Our new simulations of the MRI represent the first time that a higher-order Godunov scheme has been applied to this problem, providing a quantitative check on the accuracy of previous results computed with ZEUS; the latter are found to be reliable.Comment: 11 pages, style files included, Conference Proceedings: "Magnetic Fields in the Universe: from Laboratory and Stars to Primordial Structures", More information on Athena can be found at http://www.astro.princeton.edu/~jstone/athena.htm

    Zero modes of various graphene confiurations from the index theorem

    Get PDF
    In this article we consider a graphene sheet that is folded in various compact geometries with arbitrary topology described by a certain genus, g. While the Hamiltonian of these systems is defined on a lattice one can take the continuous limit. The obtained Dirac-like Hamiltonian describes well the low energy modes of the initial system. Starting from first principles we derive an index theorem that corresponds to this Hamiltonian. This theorem relates the zero energy modes of the graphene sheet with the topology of the compact lattice. For g = 0 and g = 1 these results coincide with the analytical and numerical studies performed for fullerene molecules and carbon nanotubes while for higher values of g they give predictions for more complicated molecules

    Constraining the Sub-AU-Scale Distribution of Hydrogen and Carbon Monoxide Gas around Young Stars with the Keck Interferometer

    Get PDF
    We present Keck Interferometer observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milliarcseconds and a spectral resolution of ~2000. Our observations span the K-band, and include the Br gamma transition of Hydrogen and the v=2-0 and v=3-1 transitions of carbon monoxide. For several targets we also present data from Keck/NIRSPEC that provide higher spectral resolution, but a seeing-limited spatial resolution, of the same spectral features. We analyze the Br gamma emission in the context of both disk and infall/outflow models, and conclude that the Br gamma emission traces gas at very small stellocentric radii, consistent with the magnetospheric scale. However some Br gamma-emitting gas also seems to be located at radii of >0.1 AU, perhaps tracing the inner regions of magnetically launched outflows. CO emission is detected from several objects, and we generate disk models that reproduce both the KI and NIRSPEC data well. We infer the CO spatial distribution to be coincident with the distribution of continuum emission in most cases. Furthermore the Br gamma emission in these objects is roughly coincident with both the CO and continuum emission. We present potential explanations for the spatial coincidence of continuum, Br gamma, and CO overtone emission, and explore the implications for the low occurrence rate of CO overtone emission in young stars. Finally, we provide additional discussion of V1685 Cyg, which is unusual among our sample in showing large differences in emitting region size and spatial position as a function of wavelength.Comment: Accepted for publication in MNRA

    Digital control of dual-load LCLC resonant converters

    Get PDF
    The paper proposes the analysis, design and realisation of dual-output resonant LCLC converters with independent output regulation, employing a single power stage and combined PWM and frequency control. Asymmetric switching of the power devices is used to facilitate independent control of the outputs to provide +5 V and +3.3 V from a 15 V-20 V input supply over a range of load condition

    Rapid analysis & design methodologies of High-Frequency LCLC Resonant Inverter as Electrodeless Fluorescent Lamp Ballast

    Get PDF
    The papers presents methodologies for the analysis of 4th-order LCLC resonant power converters operating at 2.63 MHz as fluorescent lamp ballasts, where high frequency operation facilitates capacitive discharge into the tube, with near resonance operation at high load quality factor enabling high efficiency. State-variable dynamic descriptions of the converter are employed to rapidly determine the steady-state cyclic behaviour of the ballast during nominal operation. Simulation and experimental measurements from a prototype ballast circuit driving a 60 cm, 8W T5 fluorescent lamp are also included

    Self-oscillating control methods for the LCC current-output resonant converter

    Get PDF
    Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators. The method is shown to have a similar effect as controlling the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes. However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants
    corecore