28,783 research outputs found

    Effect of contrast on the perception of direction of a moving pattern

    Get PDF
    A series of experiments examining the effect of contrast on the perception of moving plaids was performed to test the hypothesis that the human visual system determines the direction of a moving plaid in a two-staged process: decomposition into component motion followed by application of the intersection-of-contraints rule. Although there is recent evidence that the first tenet of the hypothesis is correct, i.e., that plaid motion is initially decomposed into the motion of the individual grating components, the nature of the second-stage combination rule has not yet been established. It was found that when the gratings within the plaid are of different contrast the preceived direction is not predicted by the intersection-of-constraints rule. There is a strong (up to 20 deg) bias in the direction of the higher-constrast grating. A revised model, which incorporates a contrast-dependent weighting of perceived grating speed as observed for one-dimensional patterns, can quantitatively predict most of the results. The results are then discussed in the context of various models of human visual motion processing and of physiological responses of neurons in the primate visual system

    RANDOM MATRIX THEORY APPROACH TO THE INTENSITY DISTRIBUTIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM

    Full text link
    Statistical properties of coherent radiation propagating in a quasi - 1D random media is studied in the framework of random matrix theory. Distribution functions for the total transmission coefficient and the angular transmission coefficient are obtained.Comment: 8 pages, latex, no figures. Submitted to Phys.Rev.

    Relaxation time of the topological T1 process in a two-dimensional foam

    Get PDF
    The elementary topological T1 process in a two-dimensional foam corresponds to the "flip" of one soap film with respect to the geometrical constraints. From a mechanical point of view, this T1 process is an elementary relaxation process through which the entire structure of an out-of-equilibrium foam evolves. The dynamics of this elementary relaxation process has been poorly investigated and is generally neglected during simulations of foams. We study both experimentally and theoretically the T1 dynamics in a dry two-dimensional foam. We show that the dynamics is controlled by the surface viscoelastic properties of the soap films (surface shear plus dilatational viscosity, ms+k, and Gibbs elasticity e), and is independent of the shear viscosity of the bulk liquid. Moreover, our approach illustrates that the dynamics of T1 relaxation process provides a convenient tool for measuring the surface rheological properties: we obtained e = 32+/-8 mN/m and ms+k = 1.3+/-0.7 mPa.m.s for SDS, and e = 65+/-12 mN/m and ms+k = 31+/-12 mPa.m.s for BSA, in good agreement with values reported in the literature

    Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations

    Full text link
    Quantum coherence of electrons in ferromagnetic metals is difficult to assess experimentally. We report the first measurements of time-dependent universal conductance fluctuations in ferromagnetic metal (Ni0.8_{0.8}Fe0.2_{0.2}) nanostructures as a function of temperature and magnetic field strength and orientation. We find that the cooperon contribution to this quantum correction is suppressed, and that domain wall motion can be a source of coherence-enhanced conductance fluctuations. The fluctuations are more strongly temperature dependent than those in normal metals, hinting that an unusual dephasing mechanism may be at work.Comment: 5 pages, 4 figure

    A simple portable somomicrometer, March - July 1966

    Get PDF
    Portable sonomicrometer for measuring heart dimension

    An analysis of pilot error-related aircraft accidents

    Get PDF
    A multidisciplinary team approach to pilot error-related U.S. air carrier jet aircraft accident investigation records successfully reclaimed hidden human error information not shown in statistical studies. New analytic techniques were developed and applied to the data to discover and identify multiple elements of commonality and shared characteristics within this group of accidents. Three techniques of analysis were used: Critical element analysis, which demonstrated the importance of a subjective qualitative approach to raw accident data and surfaced information heretofore unavailable. Cluster analysis, which was an exploratory research tool that will lead to increased understanding and improved organization of facts, the discovery of new meaning in large data sets, and the generation of explanatory hypotheses. Pattern recognition, by which accidents can be categorized by pattern conformity after critical element identification by cluster analysis

    Landauer Conductance of Luttinger Liquids with Leads

    Full text link
    We show that the dc conductance of a quantum wire containing a Luttinger liquid and attached to non-interacting leads is given by e2/he^2/h per spin orientation, regardless of the interactions in the wire. This explains the recent observations of the absence of conductance renormalization in long high-mobility GaAsGaAs wires by Tarucha, Honda and Saku (Solid State Communications {\bf 94}, 413 (1995)).Comment: 4 two-column pages, RevTeX + 1 uuencoded figure

    NASA research in supersonic propulsion: A decade of progress

    Get PDF
    A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described

    Nanoengineered Curie Temperature in Laterally-Patterned Ferromagnetic Semiconductor Heterostructures

    Full text link
    We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes free surfaces at the sidewalls of the patterned (Ga,Mn)As layers and thus allows the removal of Mn interstitials using annealing. This leads to an enhanced Curie temperature and reduced resistivity compared to unpatterned samples. For a fixed annealing time, the enhancement of the Curie temperature is larger for narrower nanowires.Comment: Submitted to Applied Physics Letters (minor corrections
    • …
    corecore