18 research outputs found

    Long-term stress-strain response of chalk:a micro-mechanical interpretation

    Get PDF
    A long-term laboratory test programme of conventional compression and extension tests was carried out with test durations from 8 to 22-months, in a purpose built environmentally controlled facility, with specially designed loading frames and modified triaxial cells. In addition, Scanning Electron Microscope (SEM) techniques were employed in an effort to investigate the micro-mechanical res-ponse. Creep strains appeared to trigger an ageing process that produces elevated post-creep strength and stiffness irrespective of the ap-plied stress path

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Some observations of faulting in soft clays

    No full text

    Centrifugal modelling of nonsorbing, nonequilibrium solute transport in a locally inhomogeneous soil

    No full text
    This paper presents results of centrifugal modelling of physical nonequilibrium transport of nonsorbing solute in a locally inhomogenous soil. Mathematical modelling of this class of transport process is restricted by the difficulties in determining the model parameters. The modelling results suggest that physical modelling on a geotechnical centrifuge may offer another approach to tackle this problem under certain conditions

    Model studies of soil deformations over a moving basement

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:9106.17(CUED/D-SOILS/TR--197) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Modelling of monopile-footing foundation system for offshore structures in cohesionless soils

    No full text
    While monopiles have proven to be an economically sound foundation solution for wind turbines, especially in relatively shallow water, their installation in deeper water and in hard ground may require a more complex foundation design in order to satisfy the loading conditions. One approach is that foundation systems are developed which combine several foundation elements to create a hybrid system. In this way it is possible to develop a foundation system which is more efficient for the combination of vertical and lateral loads associated with wind turbines while maintaining the efficiency and simplicity of the design. Previous studies have reported the results of single gravity tests of the hybrid system where the benefits of adding the footing to the pile are illustrated. This paper presents experimental results on the performance of skirted and unskirted monopile-footings. A simplified design approach based on conventional lateral pile analysis is presented
    corecore