20,182 research outputs found

    The Orientation of the Local Interstellar Magnetic Field

    Full text link
    The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combine observations of radio emissions and energetic particle streaming with extensive 3D MHD computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is ~ 60-90 degrees from the galactic plane. This suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger scale interstellar magnetic field thought to parallel the galactic plane

    The role of interplanetary scattering in western hemisphere large solar energetic particle events

    Get PDF
    Using high-sensitivity instruments on the ACE spacecraft, we have examined the intensities of O and Fe in 14 large solar energetic particle events whose parent activity was in the solar western hemisphere. Sampling the intensities at low (~273 keV nucleon to the -1) and high (~12 MeV nucleon to the -1) energies, we find that at the same kinetic energy per nucleon, the Fe/O ratio decreases with time, as has been reported previously. This behavior is seen in more than 70% of the cases during the rise to maximum intensity and continues in most cases into the decay phase. We find that for most events if we compare the Fe intensity with the O intensity at a higher kinetic energy per nucleon, the two time-intensity profiles are strikingly similar. Examining alternate scenarios that could produce this behavior, we conclude that for events showing this behavior the most likely explanation is that the Fe and O share similar injection profiles near the Sun, and that scattering in the interplanetary medium dominates the profiles observed at 1 AU

    Persistence of magnons in a site-diluted dimerized frustrated antiferromagnet

    Full text link
    We present inelastic neutron scattering and thermodynamic measurements characterizing the magnetic excitations in a disordered non-magnetic substituted spin-liquid antiferromagnet. The parent compound Ba3Mn2O8 is a dimerized, quasi-two-dimensional geometrically frustrated quantum disordered antiferromagnet. We substitute this compound with non-magnetic vanadium for the S = 1 manganese atoms, Ba3(Mn1-xVx)2O8, and find that the singlet-triplet excitations which dominate the spectrum of the parent compound persist for the full range of substitution examined, x = 0.02 to 0.3. We also observe additional low-energy magnetic fluctuations which are enhanced at the greatest substitution values. These excitations may be a precursor to a low-temperature random singlet phase which may exist in Ba3(Mn1-xVx)2O8Comment: 30 pages, 9 figure

    Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Nino

    Get PDF
    Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65)

    Energy in one dimensional linear waves in a string

    Full text link
    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string, and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus based physics course.Comment: 5 page

    Shearing Box Simulations of the MRI in a Collisionless Plasma

    Full text link
    We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ``collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma.Comment: 20 pages, 9 figures, submitted to Ap

    Raman spectroscopy for medical diagnostics - From in-vitro biofluid assays to in-vivo cancer detection

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications

    Infinite Symmetry in the Fractional Quantum Hall Effect

    Full text link
    We have generalized recent results of Cappelli, Trugenberger and Zemba on the integer quantum Hall effect constructing explicitly a W1+{\cal W}_{1+\infty} for the fractional quantum Hall effect such that the negative modes annihilate the Laughlin wave functions. This generalization has a nice interpretation in Jain's composite fermion theory. Furthermore, for these models we have calculated the wave functions of the edge excitations viewing them as area preserving deformations of an incompressible quantum droplet, and have shown that the W1+{\cal W}_{1+\infty} is the underlying symmetry of the edge excitations in the fractional quantum Hall effect. Finally, we have applied this method to more general wave functions.Comment: 15pp. LaTeX, BONN-HE-93-2

    Singlet-triplet dispersion reveals additional frustration in the triangular dimer compound Ba3_3Mn2_2O8_8

    Full text link
    We present single crystal inelastic neutron scattering measurements of the S=1 dimerized quasi-two-dimensional antiferromagnet Ba3_3Mn2_2O8_8. The singlet-triplet dispersion reveals nearest-neighbor and next-nearest-neighbor ferromagnetic interactions between adjacent bilayers that compete against each other. Although the inter-bilayer exchange is comparable to the intra-bilayer exchange, this additional frustration reduces the effective coupling along the c-axis and leads to a quasi-two dimensional behavior. In addition, the obtained exchange values are able to reproduce the four critical fields in the phase diagram.Comment: 4 pages, 3 color figures, submitted to an APS physical review journa

    Variance Calculations and the Bessel Kernel

    Full text link
    In the Laguerre ensemble of N x N (positive) hermitian matrices, it is of interest both theoretically and for applications to quantum transport problems to compute the variance of a linear statistic, denoted var_N f, as N->infinity. Furthermore, this statistic often contains an additional parameter alpha for which the limit alpha->infinity is most interesting and most difficult to compute numerically. We derive exact expressions for both lim_{N->infinity} var_N f and lim_{alpha->infinity}lim_{N->infinity} var_N f.Comment: 7 pages; resubmitted to make postscript compatibl
    corecore