3,488 research outputs found

    Creative haptics: an evaluation of a haptic tool for non-sighted and visually impaired design students, studying at a distance

    Get PDF
    Design students who are blind or sight-impaired face distinct challenges when studying a visually centric discipline such as design practice. Students who are sighted use computer-aided design (CAD) which is presented via high definition using a PC mouse. However, design students who are blind or sight-impaired are not able to use visual display technology; therefore, this creates a barrier to access for this community. The aim of this study is to present a haptic prototype trial (Haptic Application Prototype Test [HAPT]) designed to assist design students who are blind/sight-impaired to interact with prototype assembly at the Open University (OU). The study specifically assessed the user feedback and the efficacy of access to CAD interface through the affordances of the haptic interface. The experiment included two groups of participants: one group included students who were blind and sight-impaired and the second group students who were classed fully sighted. Both groups were tested in two conditions of haptic engagement – manual and virtual. The parameters examined were (a) time – set at an industry-recognized time taken to assemble a ‘sketch model’ or prototype, and (b) ncollision – the number of collisions created by a collision algorithm which calculated any random collisions with the virtual environment or objects therein. Quantitative results showed that there was little statistical difference between time and a between-group test. From this we can imply that the haptic interface had offered equal access to CAD for people in the trial who were sighted and blind/sight-impaired indiscriminate of their sight acuity. Further future work using HAPT could be developed to a wider audience and a larger more diverse range of sight-impaired users. Future work will focus on new explorations of teaching using of haptics for greater immersion for distance learners at the OU science, technology, engineering and mathematics (STEM) labs

    Chlamydia Pneumoniae CdsL Regulates CdsN ATPase Activity, and Disruption with a Peptide Mimetic Prevents Bacterial Invasion

    Get PDF
    Chlamydiae are obligate intracellular pathogens that likely require type III secretion (T3S) to invade cells and replicate intracellularly within a cytoplasmic vacuole called an inclusion body. Chlamydia pneumoniae possess a YscL ortholog, CdsL, that has been shown to interact with the T3S ATPase (CdsN). In this report we demonstrate that CdsL down-regulates CdsN enzymatic activity in a dose-dependent manner. Using Pepscan epitope mapping we identified two separate binding domains to which CdsL binds viz. CdsN221–229 and CdsN265–270. We confirmed the binding domains using a pull-down assay and showed that GST–CdsN221–270, which encompasses these peptides, co-purified with His–CdsL. Next, we used orthology modeling based on the crystal structure of a T3S ATPase ortholog from Escherichia coli, EscN, to map the binding domains on the predicted 3D structure of CdsN. The CdsL binding domains mapped to the catalytic domain of the ATPase, one in the central channel of the ATPase hexamer and one on the outer face. Since peptide mimetics have been used to disrupt essential protein interactions of the chlamydial T3S system and inhibit T3S-mediated invasion of HeLa cells, we hypothesized that if CdsL–CdsN binding is essential for regulating T3S then a CdsN peptide mimetic could be used to potentially block T3S and chlamydial invasion. Treatment of elementary body with a CdsN peptide mimetic inhibited C. pneumoniae invasion into HeLa cells in a dose-dependent fashion. This report represents the first use of Pepscan technology to identify binding domains for specific T3S proteins viz. CdsL on the ATPase, CdsN, and demonstrates that peptide mimetics can be used as anti-virulence factors to block bacterial invasion

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    Panoramic SETI: on-sky results from prototype telescopes and instrumental design

    Get PDF
    The Panoramic SETI (Search for Extraterrestrial Intelligence) experiment (PANOSETI) aims to detect and quantify optical transients from nanosecond to second precision over a large field-of-view (∼4,450 square-degrees). To meet these challenging timing and wide-field requirements, the PANOSETI experiment will use two assemblies of ∼45 telescopes to reject spurious signals by coincidence detection, each one comprising custom-made fast photon-counting hardware combined with (f/1.32) focusing optics. Preliminary on-sky results from pairs of PANOSETI prototype telescopes (100 sq.deg.) are presented in terms of instrument performance and false alarm rates. We found that a separation of >1 km between telescopes surveying the same field-of-view significantly reduces the number of false positives due to nearby sources (e.g., Cherenkov showers) in comparison to a side- by-side configuration of telescopes. Design considerations on the all-sky PANOSETI instrument and expected field-of-views are reported

    Power Versus Affiliation in Political Ideology

    Get PDF
    Posited motivational differences between liberals and conservatives have historically been controversial. This motivational interface has recently been bridged, but the vast majority of studies have used self-reports of values or motivation. Instead, the present four studies investigated whether two classic social motive themes—power and affiliation—vary by political ideology in objective linguistic analysis terms. Study 1 found that posts to liberal chat rooms scored higher in standardized affiliation than power, whereas the reverse was true of posts to conservative chat rooms. Study 2 replicated this pattern in the context of materials posted to liberal versus conservative political news websites. Studies 3 and 4, finally, replicated a similar interactive (ideology by motive type) pattern in State of the State and State of the Union addresses. Differences in political ideology, these results suggest, are marked by, and likely reflective of, mind-sets favoring affiliation (liberal) or power (conservative). </jats:p

    Panoramic SETI: Program Update and High-Energy Astrophysics Applications

    Full text link
    Optical SETI (Search for Extraterrestrial Intelligence) instruments that can explore the very fast time domain, especially with large sky coverage, offer an opportunity for new discoveries that can complement multimessenger and time domain astrophysics. The Panoramic SETI experiment (PANOSETI) aims to observe optical transients with nanosecond to second duration over a wide field-of-view (\thicksim2,500 sq.deg.) by using two assemblies of tens of telescopes to reject spurious signals by coincidence detection. Three PANOSETI telescopes, connected to a White Rabbit timing network used to synchronize clocks at the nanosecond level, have been deployed at Lick Observatory on two sites separated by a distance of 677 meters to distinguish nearby light sources (such as Cherenkov light from particle showers in the Earth's atmosphere) from astrophysical sources at large distances. In parallel to this deployment, we present results obtained during four nights of simultaneous observations with the four 12-meter VERITAS gamma-ray telescopes and two PANOSETI telescopes at the Fred Lawrence Whipple Observatory. We report PANOSETI's first detection of astrophysical gamma rays, comprising three events with energies in the range between \thicksim15 TeV and \thicksim50 TeV. These were emitted by the Crab Nebula, and identified as gamma rays using joint VERITAS observations.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes + Instrumentation conference, 2022, Montr\'eal, Qu\'ebec, Canad

    Forearm muscle oxidative capacity index predicts sport rock-climbing performance

    Get PDF
    Abstract: Rock-climbing performance is largely dependent on the endurance of the forearm flexors. Recently, it was reported that forearm flexor endurance in elite climbers is independent of the ability to regulate conduit artery (brachial) blood flow, suggesting that endurance is not primarily dependent on the ability of the brachial artery to deliver oxygen, but rather the ability of the muscle to perfuse and use oxygen, i.e., skeletal muscle oxidative capacity. Purpose: The aim of the study was to determine whether an index of oxidative capacity in the flexor digitorum profundus (FDP) predicts the best sport climbing red-point grade within the last 6 months. Participants consisted of 46 sport climbers with a range of abilities. Methods: Using near-infrared spectroscopy, the oxidative capacity index of the FDP was assessed by calculating the half-time for tissue oxygen resaturation (O2HTR) following 3–5 min of ischemia. Results: Linear regression, adjusted for age, sex, BMI, and training experience, revealed a 1-s decrease in O2HTR was associated with an increase in red-point grade by 0.65 (95 % CI 0.35–0.94, Adj R2 = 0.53). Conclusions: Considering a grade of 0.4 separated the top four competitors in the 2015 International Federation Sport Climbing World Cup, this finding suggests that forearm flexor oxidative capacity index is an important determinant of rock-climbing performance
    corecore