190 research outputs found

    Psychometric testing of a Swedish version of the Apathy Evaluation Scale

    Get PDF
    Background: Apathy, a prevalent and clinically relevant symptom in neurodegenerative disease, is often evaluated by the instrument Apathy Evaluation Scale (AES). However, this instrument has not been translated into Swedish, halting clinical and research efforts. Furthermore, previous studies lack analyses of some basic properties, such as the legitimacy of a total score, or have analysed dimensionality by questionable methods.Aim: To translate and psychometrically evaluate a Swedish version of the AES.Method: The AES was translated, and its psychometric properties were tested in the Swedish BioFINDER study, including cognitively well elderly, and subjects with mild cognitive or parkinsonian symptoms. Psychometric analyses were conducted according to classical test theory (CTT) and aimed to resemble those performed in the English original study by Marin et al. in 1991. Dimensionality was additionally analysed on a matrix of polychoric correlations and parallel analyses.Results: Data indicate that the Swedish AES performs satisfactorily regarding data completeness, scaling assumptions, targeting, and reliability. Principal component analyses (with parallel analysis) of polychoric correlation matrices identified a single component. Convergent and discriminative validity correlations accorded with a priori expectations.Conclusions: The study provides initial support that this Swedish AES performs similarly to the English original, and exhibits acceptable psychometric properties according to CTT, including supported unidimensionality, and may be adopted for use in clinical and research settings.Keywords: Apathy, Apathy Evaluation Scale (AES), neurodegenerative disease, neuropsychiatric assessment, psychometric

    Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer's disease

    Get PDF
    INTRODUCTION: Matrix metalloproteinases (MMP) are believed to be involved in the pathologic processes behind Alzheimer's disease (AD). In this study, we aimed to examine the cerebrospinal fluid (CSF) levels of MMPs and tissue inhibitors of metalloproteinase-1 (TIMP-1) in individuals with AD dementia and cognitively healthy elderly individuals, and to investigate their relationship with established CSF biomarkers for Alzheimer's disease.METHODS: CSF was collected from 38 individuals with AD dementia and 34 cognitively healthy elderly individuals. The CSF was analyzed for MMP-1, MMP-3, MMP-9, TIMP-1, beta-amyloid1-42 (Abeta42), total tau protein (T-tau) and phosphorylated tau protein (P-tau). MMP/TIMP-1 ratios were calculated. APOE genotype was determined for the participants.RESULTS: AD patients had higher MMP-9/TIMP-1 ratios and lower TIMP-1 levels compared to cognitively healthy individuals. In AD patients, the MMP-9/TIMP-1 ratio correlated with CSF T-tau, a marker of neurodegeneration. Interestingly, the cognitively healthy individuals with risk markers for future AD, i.e. AD-supportive CSF biomarker levels of T-tau, P-tau and Abeta42 or the presence of the APOE epsilon4 allele, had higher CSF MMP-3 and MMP-9 levels and higher CSF MMP-3/TIMP-1 ratios compared to the healthy individuals without risk markers. The CSF levels of MMP-3 and -9 in the control group also correlated with the CSF T-tau and P-tau levels.CONCLUSIONS: This study indicates that MMP-3 and MMP-9 might be involved in early pathogenesis of AD and that MMPs could be associated with neuronal degeneration and formation of neurofibrillary tangles even prior to development of overt cognitive dysfunction

    Associations of CSF PDGFRβ With Aging, Blood-Brain Barrier Damage, Neuroinflammation, and Alzheimer Disease Pathologic Changes

    Get PDF
    BACKGROUND AND OBJECTIVES: Injured pericytes in the neurovascular unit release platelet-derived growth factor β (PDGFRβ) into the CSF. However, it is not clear how pericyte injury contributes to Alzheimer disease (AD)-related changes and blood-brain barrier (BBB) damage. We aimed to test whether CSF PDGFRβ was associated with different AD-associated and age-associated pathologic changes leading to dementia. METHODS: PDGFRβ was measured in the CSF of 771 participants with cognitively unimpaired (CU, n = 408), mild cognitive impairment (MCI, n = 175), and dementia (n = 188) from the Swedish BioFINDER-2 cohort. We then checked association with β-amyloid (Aβ)-PET and tau-PET standardized uptake value ratio, APOE ε4 genotype and MRI measurements of cortical thickness, white matter lesions (WMLs), and cerebral blood flow. We also analyzed the role of CSF PDGFRβ in the relationship between aging, BBB dysfunction (measured by CSF/plasma albumin ratio, QAlb), and neuroinflammation (i.e., CSF levels of YKL-40 and glial fibrillary acidic protein [GFAP], preferentially expressed in reactive astrocytes). RESULTS: The cohort had a mean age of 67 years (CU = 62.8, MCI = 69.9, dementia = 70.4), and 50.1% were male (CU = 46.6%, MCI = 53.7%, dementia = 54.3%). Higher CSF PDGFRβ concentrations were related to higher age (b = 19.1, β = 0.5, 95% CI 16-22.2, p 0.05). DISCUSSION: In summary, pericyte damage, reflected by CSF PDGFRβ, may be involved in age-related BBB disruption together with neuroinflammation, but is not related to Alzheimer-related pathologic changes

    Clinical performance and robustness evaluation of plasma amyloid-β42/40 prescreening

    Get PDF
    INTRODUCTION: Further evidence is needed to support the use of plasma amyloid β (Aβ) biomarkers as Alzheimer's disease prescreening tools. This study evaluated the clinical performance and robustness of plasma Aβ42 /Aβ40 for amyloid positivity prescreening. METHODS: Data were collected from 333 BioFINDER and 121 Alzheimer's Disease Neuroimaging Initiative study participants. Risk and predictive values versus percentile of plasma Aβ42 /Aβ40 evaluated the actionability of plasma Aβ42 /Aβ40 , and simulations modeled the impact of potential uncertainties and biases. Amyloid PET was the brain amyloidosis reference standard. RESULTS: Elecsys plasma Aβ42 /Aβ40 could potentially rule out amyloid pathology in populations with low-to-moderate amyloid positivity prevalence. However, simulations showed small measurement or pre-analytical errors in Aβ42 and/or Aβ40 cause misclassifications, impacting sensitivity or specificity. The minor fold change between amyloid PET positive and negative cases explains the biomarkers low robustness. DISCUSSION: Implementing plasma Aβ42 /Aβ40 for routine clinical use may pose significant challenges, with misclassification risks. HIGHLIGHTS: Plasma Aβ42 /Aβ40 ruled out amyloid PET positivity in a setting of low amyloid-positive prevalence. Including (pre-) analytical errors or measurement biases caused misclassifications. Plasma Aβ42 /Aβ40 had a low inherent dynamic range, independent of analytical method. Other blood biomarkers may be easier to implement as robust prescreening tools

    Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau

    Get PDF
    Alzheimer\u27s disease is characterized by β-amyloid plaques and tau tangles. Plasma levels of phospho-tau217 (P-tau217) accurately differentiate Alzheimer\u27s disease dementia from other dementias, but it is unclear to what degree this reflects β-amyloid plaque accumulation, tau tangle accumulation, or both. In a cohort with post-mortem neuropathological data (N = 88), both plaque and tangle density contributed independently to higher P-tau217, but P-tau217 was not elevated in patients with non-Alzheimer\u27s disease tauopathies (N = 9). Several findings were replicated in a cohort with PET imaging ( BioFINDER-2 , N = 426), where β-amyloid and tau PET were independently associated with P-tau217. P-tau217 concentrations correlated with β-amyloid PET (but not tau PET) in early disease stages and with both β-amyloid and (more strongly) tau PET in late disease stages. Finally, P-tau217 mediated the association between β-amyloid and tau in both cohorts, especially for tau outside of the medial temporal lobe. These findings support the hypothesis that plasma P-tau217 concentration is increased by both β-amyloid plaques and tau tangles and is congruent with the hypothesis that P-tau is involved in β-amyloid-dependent formation of neocortical tau tangles

    Combined Connectomics, MAPT Gene Expression, and Amyloid Deposition to Explain Regional Tau Deposition in Alzheimer Disease

    Get PDF
    Objective We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. Methods We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. Results Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118–0.148, 0.156–0.196, and 0.251–0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). Interpretation Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 202

    Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers

    Get PDF
    IMPORTANCE: Alzheimer disease (AD) pathology starts with a prolonged phase of β-amyloid (Aβ) accumulation without symptoms. The duration of this phase differs greatly among individuals. While this disease phase has high relevance for clinical trial designs, it is currently unclear how to best predict the onset of clinical progression. OBJECTIVE: To evaluate combinations of different plasma biomarkers for predicting cognitive decline in Aβ-positive cognitively unimpaired (CU) individuals. DESIGN, SETTING, AND PARTICIPANTS: This prospective population-based prognostic study evaluated data from 2 prospective longitudinal cohort studies (the Swedish BioFINDER-1 and the Wisconsin Registry for Alzheimer Prevention [WRAP]), with data collected from February 8, 2010, to October 21, 2020, for the BioFINDER-1 cohort and from August 11, 2011, to June 27, 2021, for the WRAP cohort. Participants were CU individuals recruited from memory clinics who had brain Aβ pathology defined by cerebrospinal fluid (CSF) Aβ42/40 in the BioFINDER-1 study and by Pittsburgh Compound B (PiB) positron emission tomography (PET) in the WRAP study. A total of 564 eligible Aβ-positive and Aβ-negative CU participants with available relevant data from the BioFINDER-1 and WRAP cohorts were included in the study; of those, 171 Aβ-positive participants were included in the main analyses. EXPOSURES: Baseline P-tau181, P-tau217, P-tau231, glial fibrillary filament protein, and neurofilament light measured in plasma; CSF biomarkers in the BioFINDER-1 cohort, and PiB PET uptake in the WRAP cohort. MAIN OUTCOMES AND MEASURES: The primary outcome was longitudinal measures of cognition (using the Mini-Mental State Examination [MMSE] and the modified Preclinical Alzheimer Cognitive Composite [mPACC]) over a median of 6 years (range, 2-10 years). The secondary outcome was conversion to AD dementia. Baseline biomarkers were used in linear regression models to predict rates of longitudinal cognitive change (calculated separately). Models were adjusted for age, sex, years of education, apolipoprotein E ε4 allele status, and baseline cognition. Multivariable models were compared based on model R2 coefficients and corrected Akaike information criterion. RESULTS: Among 171 Aβ-positive CU participants included in the main analyses, 119 (mean [SD] age, 73.0 [5.4] years; 60.5% female) were from the BioFINDER-1 study, and 52 (mean [SD] age, 64.4 [4.6] years; 65.4% female) were from the WRAP study. In the BioFINDER-1 cohort, plasma P-tau217 was the best marker to predict cognitive decline in the mPACC (model R2 = 0.41) and the MMSE (model R2 = 0.34) and was superior to the covariates-only models (mPACC: R2 = 0.23; MMSE: R2 = 0.04; P < .001 for both comparisons). Results were validated in the WRAP cohort; for example, plasma P-tau217 was associated with mPACC slopes (R2 = 0.13 vs 0.01 in the covariates-only model; P = .01) and MMSE slopes (R2 = 0.29 vs 0.24 in the covariates-only model; P = .046). Sparse models were identified with plasma P-tau217 as a predictor of cognitive decline. Power calculations for enrichment in hypothetical clinical trials revealed large relative reductions in sample sizes when using plasma P-tau217 to enrich for CU individuals likely to experience cognitive decline over time. CONCLUSIONS AND RELEVANCE: In this study, plasma P-tau217 predicted cognitive decline in patients with preclinical AD. These findings suggest that plasma P-tau217 may be used as a complement to CSF or PET for participant selection in clinical trials of novel disease-modifying treatments

    A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases

    Get PDF
    Cost-effective strategies for identifying amyloid-β (Aβ) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-Aβ immunotherapies for Alzheimer’s disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining Aβ-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE ε4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of Aβ-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF Aβ42/Aβ40 testing, whereas step 1 alone determined Aβ-status for low- and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting Aβ-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings

    CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease

    Get PDF
    OBJECTIVE: The diagnostic accuracy of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) must be improved before widespread clinical use. This study aimed to determine whether CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios are better diagnostic biomarkers of AD during both predementia and dementia stages in comparison to CSF Aβ42 alone. // METHODS: The study comprised three different cohorts (n = 1182) in whom CSF levels of Aβ42, Aβ40, and Aβ38 were assessed. CSF Aβs were quantified using three different immunoassays (Euroimmun, Meso Scale Discovery, Quanterix). As reference standard, we used either amyloid (18F‐flutemetamol) positron emission tomography (PET) imaging (n = 215) or clinical diagnosis (n = 967) of well‐characterized patients. // RESULTS: When using three different immunoassays in cases with subjective cognitive decline and mild cognitive impairment, the CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios were significantly better predictors of abnormal amyloid PET than CSF Aβ42. Lower Aβ42, Aβ42/Aβ40, and Aβ42/Aβ38 ratios, but not Aβ40 and Aβ38, correlated with smaller hippocampal volumes measured by magnetic resonance imaging. However, lower Aβ38, Aβ40, and Aβ42, but not the ratios, correlated with non‐AD‐specific subcortical changes, that is, larger lateral ventricles and white matter lesions. Further, the Aβ42/Aβ40 and Aβ42/Aβ38 ratios showed increased accuracy compared to Aβ42 when distinguishing AD from dementia with Lewy bodies or Parkinson's disease dementia and subcortical vascular dementia, where all Aβs (including Aβ42) were decreased. //INTERPRETATION: The CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios are significantly better than CSF Aβ42 to detect brain amyloid deposition in prodromal AD and to differentiate AD dementia from non‐AD dementias. The ratios reflect AD‐type pathology better, whereas decline in CSF Aβ42 is also associated with non‐AD subcortical pathologies. These findings strongly suggest that the ratios rather than CSF Aβ42 should be used in the clinical work‐up of AD

    Complementary pre-screening strategies to uncover hidden prodromal and mild Alzheimer's disease : Results from the MOPEAD project

    Get PDF
    The Models of Patient Engagement for Alzheimer's Disease (MOPEAD) project was conceived to explore innovative complementary strategies to uncover hidden prodromal and mild Alzheimer's disease (AD) dementia cases and to raise awareness both in the general public and among health professionals about the importance of early diagnosis. Four different strategies or RUNs were used: (a) a web-based (WB) prescreening tool, (2) an open house initiative (OHI), (3) a primary care-based protocol for early detection of cognitive decline (PC), and (4) a tertiary care-based pre-screening at diabetologist clinics (DC). A total of 1129 patients at high risk of having prodromal AD or dementia were identified of 2847 pre-screened individuals (39.7%). The corresponding proportion for the different initiatives were 36.8% (WB), 35.6% (OHI), 44.4% (PC), and 58.3% (DC). These four complementary pre-screening strategies were useful for identifying individuals at high risk of having prodromal or mild AD
    corecore