269 research outputs found

    Does capital regulation matter for bank behaviour? Evidence for German savings banks

    Get PDF
    The aim of this paper is to assess how German savings banks adjust capital and risk under capital regulation. We estimate a modified version of the model developed by Shrieves and Dahl (1992). This paper contributes to the literature in three ways. First, we test the capital buffer theory (Marcus 1984, Milne and Whalley 2002). Second, we use dynamic panel data techniques that explicitly take unobserved heterogeneity into account. And third, we provide new evidence for non-US banks by using a new dataset of supervisory data collected by the Deutsche Bundesbank. We find evidence that the coordination of capital and risk adjustments depends on the amount of capital the bank holds in excess of the regulatory minimum (the "capital buffer"). Banks with low capital buffers try to rebuild an appropriate capital buffer by raising capital while simultaneously lowering risk. In contrast, banks with high capital buffers try to maintain their capital buffer by increasing risk when capital increases. These findings support the capital buffer theory. --bank regulation,risk taking,bank capital

    Does capital regulation matter for bank behaviour? Evidence for German savings banks

    Full text link
    The aim of this paper is to assess how German savings banks adjust capital and risk under capital regulation. We estimate a modified version of the model developed by Shrieves and Dahl (1992). This paper contributes to the literature in three ways. First, we test the capital buffer theory (Marcus 1984, Milne and Whalley 2002). Second, we use dynamic panel data techniques that explicitly take unobserved heterogeneity into account. And third, we provide new evidence for non-US banks by using a new dataset of supervisory data collected by the Deutsche Bundesbank. We find evidence that the coordination of capital and risk adjustments depends on the amount of capital the bank holds in excess of the regulatory minimum (the "capital buffer"). Banks with low capital buffers try to rebuild an appropriate capital buffer by raising capital while simultaneously lowering risk. In contrast, banks with high capital buffers try to maintain their capital buffer by increasing risk when capital increases. These findings support the capital buffer theory

    Numerical simulation of exciton dynamics in Cu2O at ultra low temperatures within a potential trap

    Full text link
    We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu2O) at ultra low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3K and 5K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5K that the excitons reach local equilibrium with the lattice i.e. that the effective local temperature is coming down to bath temperature, while below 0.5K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature are not coming down to bath temperature. In the first case we find a Bose-Einstein condensation (BEC) to occur for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas

    Single Proton Knock-Out Reactions from 24,25,26F

    Full text link
    The cross sections of the single proton knock-out reactions from 24F, 25F, and 26F on a 12C target were measured at energies of about 50 MeV/nucleon. Ground state populations of 6.6+-.9 mb, 3.8+-0.6 mb for the reactions 12C(24F,23O) and 12C(25F,24O) were extracted, respectively. The data were compared to calculations based on the many-body shell model and the eikonal theory. In the reaction 12C(26F,25O) the particle instability of 25O was confirmed

    Resilience management processes in the offshore wind industry: Schematization and application to an export cable attack

    Get PDF
    Offshore wind energy (OWE) production is a crucial element for increasing the amount of renewable energy. Consequently, one can observe a strong and constant rise of the OWE industry, turning it to an important contributor of national energy provision. This trend, however, is accompanied by increasing pressure on the reliability, safety, and security of the OWE infrastructure. Related security threats are characterized by high uncertainty regarding impact and probability leading to considerable complication of the risk assessment. On the other hand, the resilience concept emphasizes the consideration of the system’s response to such threats, and thus, offers a solution for dealing with the high uncertainty. In this work, we present an approach for combining the strengths of risk and resilience management to provide a solution for handling security threats in OWE infrastructures. Within this context, we introduce a quality assessment enabling the quantification of the trustworthiness of obtained results

    Half-life Limit of 19Mg

    Full text link
    A search for 19Mg was performed using projectile fragmentation of a 150 MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight through the fragment separator an upper limit of 22 ns for the half-life of 19Mg was established

    Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory

    Full text link
    We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under cw-excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose-Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose-Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure

    Urban Mobility: Airtaxi Cabin from a Passengers Point of View

    Get PDF
    Within German Aerospace Center (DLR), a project called HorizonUAM was launched in July 2020. Its main goal is to develop and design an aerial vehicle which would support the infrastructure of the ever-growing cities. The vehicle will be designed for the four different scenarios: airport shuttle, intracity transport, intercity transport and suburban connection. This paper shows the research concerning the potential users of the vehicle including their requirements and shows a possible design solution for an airtaxi cabin. The process has followed the Design Thinking Method, ensuring a central role for the users. To determine whether there are potential passengers willing to use such a vehicle, in-depth research has been done. Data found in previously done research has been compared with results of the in-house research, consisting of a number of workshops with representatives of German population as well as results form questionnaires sent out to a different group of German population. Based on this data, different fictive personas are created, to aid in understanding of the user’s needs. In addition, trend analysis on how the urban mobility is developing, has also been executed. The state-of-the-art solutions available are analyzed and their strengths and weaknesses determined. The entire research has resulted in an extensive list of requirements for the design of the cabin. To address such a complex design challenge, a morphological chart has been created, systematically deconstructing the main function into subfunctions. This has been done by multiple workshops with a constant team. This paper will show how the different scenarios influence the cabin design and will establish whether it is possible to serve multiple scenarios with a single cabin, from a passenger’s point of view. In addition, it will demonstrate the level of acceptance among alleged passengers and their vision on how a cabin of such a vehicle should look like and what it should focus on. Furthermore, it will display how the results of previously committed research are translated into first ideas, sketched as well as 2D as 3D

    Unique Cell Adhesion and Invasion Properties of Yersinia enterocolitica O:3, the Most Frequent Cause of Human Yersiniosis

    Get PDF
    Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment
    corecore