6 research outputs found

    Gastroesophageal Reflux and Body Movement in Infants: Investigations with Combined Impedance-pH and Synchronized Video Recording

    Get PDF
    The aim of this paper was to investigate the temporal association of gastroesophageal reflux (GER) and body movement in infants. GER were registered by combined impedance-pH, documentation of body movement was done by video. Videorecording time (Vt) was divided into “resting time” and “movement time” and analyzed for occurrence of GER. Association was defined as movement 1 minute before/after the beginning of a GER. Statistical evaluation was by Fisher's exact test. In 15 infants, 341 GER were documented during Vt (86 hours). 336 GER (99%) were associated with movement, only 5 episodes (1%) occured during resting time. Movement was significantly associated with the occurrence of GER (P < .0001). There is a strong temporal association between GER and body movement in infants. However, a clear distinction between cause and effect could not be made with the chosen study design. Combined impedance-pH has proven to be the ideal technique for this approach

    Gastroösophagealer Reflux und Bewegung im Säuglingsalter

    No full text

    PTRH2 is Necessary for Purkinje Cell Differentiation and Survival and its Loss Recapitulates Progressive Cerebellar Atrophy and Ataxia Seen in IMNEPD Patients

    Get PDF
    Homozygous variants in the peptidyl-tRNA hydrolase 2 gene (PTRH2) cause infantile-onset multisystem neurologic, endocrine, and pancreatic disease. The objective is to delineate the mechanisms underlying the core cerebellar phenotype in this disease. For this, we generated constitutive (Ptrh2LoxPxhCMVCre, Ptrh2−/− mice) and Purkinje cell (PC) specific (Ptrh2LoxPxPcp2Cre, Ptrh2ΔPCmice) Ptrh2 mutant mouse models and investigated the effect of the loss of Ptrh2 on cerebellar development. We show that Ptrh2−/− knockout mice had severe postnatal runting and lethality by postnatal day 14. Ptrh2ΔPC PC specific knockout mice survived until adult age; however, they showed progressive cerebellar atrophy and functional cerebellar deficits with abnormal gait and ataxia. PCs of Ptrh2ΔPC mice had reduced cell size and density, stunted dendrites, and lower levels of ribosomal protein S6, a readout of the mammalian target of rapamycin pathway. By adulthood, there was a marked loss of PCs. Thus, we identify a cell autonomous requirement for PTRH2 in PC maturation and survival. Loss of PTRH2 in PCs leads to downregulation of the mTOR pathway and PC atrophy. This suggests a molecular mechanism underlying the ataxia and cerebellar atrophy seen in patients with PTRH2 mutations leading to infantile-onset multisystem neurologic, endocrine, and pancreatic disease.Open Access funding enabled and organized by Projekt DEAL. Our research was financially supported by the German Research Foundation (SFB1315, FOR3004) and the Charité

    Resonant vibrational excitation of CH3X (X = F, Cl, Br and I) by low-energy electron impact

    No full text
    Perinatal inflammation is a major risk factor for neurological deficits in preterm infants. Several experimental studies have shown that systemic inflammation can alter the programming of the developing brain. However, these studies do not offer detailed pathophysiological mechanisms, and they rely on relatively severe infectious or inflammatory stimuli that most likely do not reflect the levels of systemic inflammation observed in many human preterm infants. The goal of the present study was to test the hypothesis that moderate systemic inflammation is sufficient to alter white matter development
    corecore