205 research outputs found
Reactive Polymorphic Nanoparticles: Preparation via Polymerization-Induced Self-Assembly and Postsynthesis Thiol-para-Fluoro Core Modification
The use of 2,3,4,5,6-pentafluorobenzyl methacrylate (PFBMA) as a core-forming monomer in ethanolic reversible addition-fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain-extended with PFBMA leading to nanoparticle formation via polymerization-induced self-assembly (PISA). pPEGMA-pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo-reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol-para-fluoro substitution reactions in ethanol using 1,8-diazabicyclo[5.4.0]undec-7-ene as the base. For monothiols, conversions were 64% (1-octanethiol) and 94% (benzyl mercaptan). Spherical and worm-shaped nano-objects were core cross-linked using 1,8-octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature-responsive worm sample, cross-linking additionally resulted in the loss of the temperature-triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well-defined nano-objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature
Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric
The present work focuses on nanowire (NW) applications as semiconducting elements in solution processable field-effect transistors (FETs) targeting large-area low-cost electronics. We address one of the main challenges related to NW deposition and alignment by using dielectrophoresis (DEP) to select multiple ZnO nanowires with the correct length, and to attract, orientate and position them in predefined substrate locations. High-performance top-gate ZnO NW FETs are demonstrated on glass substrates with organic gate dielectric layers and surround source–drain contacts. Such devices are hybrids, in which inorganic multiple single-crystal ZnO NWs and organic gate dielectric are synergic in a single system. Current–voltage (I–V) measurements of a representative hybrid device demonstrate excellent device performance with high on/off ratio of ~107, steep subthreshold swing (s-s) of ~400 mV/dec and high electron mobility of ~35 cm2 V−1 s−1 in N2 ambient. Stable device operation is demonstrated after 3 months of air exposure, where similar device parameters are extracted including on/off ratio of ~4 × 106, s-s ~500 mV/dec and field-effect mobility of ~28 cm2 V−1 s−1. These results demonstrate that DEP can be used to assemble multiples of NWs from solvent formulations to enable low-temperature hybrid transistor fabrication for large-area inexpensive electronics
Highly photoconductive amorphous carbon nitride films prepared by cyclic nitrogen radical sputtering
Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing
Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry
- …