14 research outputs found

    Pediatric hemispheric high-grade glioma: targeting the future

    Full text link
    Pediatric high-grade gliomas (pHGGs) are a group of tumors affecting approximately 0.85 children per 100,000 annually. The general outcome for these tumors is poor with 5-year survival rates of less than 20%. It is now recognized that these tumors represent a heterogeneous group of tumors rather than one entity. Large-scale genomic analyses have led to a greater understanding of the molecular drivers of different subtypes of these tumors and have also aided in the development of subtype-specific therapies. For example, for pHGG with NTRK fusions, promising new targeted therapies are actively being explored. Herein, we review the clinico-pathologic and molecular classification of these tumors, historical treatments, current management strategies, and therapies currently under investigation

    Interdisciplinary care of children with diffuse midline glioma

    No full text
    Diffuse Midline Glioma (DMG) which includes Diffuse Intrinsic Pontine Glioma (DIPG) is an infiltrative tumor of the midline structures of the central nervous system that demonstrates an aggressive pattern of growth and has no known curative treatment. As these tumors progress, children experience ongoing neurological decline including inability to ambulate, swallow and communicate effectively. We propose that optimal care for patients with DMG should involve a specialized team experienced in caring for the multifaceted needs of these patients and their families. Herein we review the roles and evidence to support early involvement of a specialized interdisciplinary team and outline our views on best practices for these challenging tumors

    Functional network alterations in young brain tumor patients with radiotherapy-induced memory impairments and vascular injury.

    No full text
    BackgroundCognitive impairment and cerebral microbleeds (CMBs) are long-term side-effects of cranial radiation therapy (RT). Previously we showed that memory function is disrupted in young patients and that the rate of cognitive decline correlates with CMB development. However, vascular injury alone cannot explain RT-induced cognitive decline. Here we use resting-state functional MRI (rsfMRI) to further investigate the complex mechanisms underlying memory impairment after RT.MethodsNineteen young patients previously treated with or without focal or whole-brain RT for a brain tumor underwent cognitive testing followed by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global brain modularity and efficiency, and rsfMRI signal variability within the dorsal attention, salience, and frontoparietal networks were computed. We evaluated whether MR metrics could distinguish age- and sex-matched controls (N = 19) from patients and differentiate patients based on RT exposure and aggressiveness. We also related MR metrics with memory performance, CMB burden, and risk factors for cognitive decline after RT.ResultsCompared to controls, patients exhibited widespread hyperconnectivity, similar modularity, and significantly increased efficiency (p < 0.001) and network variability (p < 0.001). The most abnormal values were detected in patients treated with high dose whole-brain RT, having supratentorial tumors, and who did not undergo RT but had hydrocephalus. MR metrics and memory performance were correlated (R = 0.34-0.53), though MR metrics were more strongly related to risk factors for cognitive worsening and CMB burden with evidence of functional recovery.ConclusionsMR metrics describing brain connectivity and variability represent promising candidate imaging biomarkers for monitoring of long-term cognitive side-effects after RT

    Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy

    No full text
    PurposeAlthough radiation therapy (RT) is a common treatment for pediatric brain tumors, it is associated with detrimental long-term effects such as impaired cognition, vascular injury, and increased stroke risk. This study aimed to develop metrics that describe vascular injury and relate them to the presence of cerebral microbleeds (CMBs) and cognitive performance scores.MethodsTwenty-five young adult survivors of pediatric brain tumors treated with either whole-brain (n = 12), whole-ventricular (n = 7), or no RT (n = 6) underwent 7T MRI and neurocognitive testing. Simultaneously acquired MR angiography and susceptibility-weighted images were used to segment CMBs and vessels and quantify their radii and volume.ResultsPatients treated with whole-brain RT had significantly lower arterial volumes (p = 0.003) and a higher proportion of smaller vessels (p = 0.003) compared to the whole-ventricular RT and non-irradiated control patients. Normalized arterial volume decreased with increasing CMB count (R = - 0.66, p = 0.003), and decreasing trends were observed with time since RT and at longitudinal follow-up. Global cognition and verbal memory significantly decreased with smaller normalized arterial volume (p ≤ 0.05).ConclusionsArterial volume is reduced with increasing CMB presence and is influenced by the total brain volume exposed to radiation. This work highlights the potential use of vascular-derived metrics as non-invasive markers of treatment-induced injury and cognitive impairment in pediatric brain tumor patients

    Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young patients treated with radiation therapy for a brain tumor.

    No full text
    BackgroundRadiation therapy (RT) is essential to the management of many brain tumors, but has been known to lead to cognitive decline and vascular injury in the form of cerebral microbleeds (CMBs).PurposeIn a subset of children, adolescents, and young adults recruited from a larger trial investigating arteriopathy and stroke risk after RT, we evaluated the prevalence of CMBs after RT, examined risk factors for CMBs and cognitive impairment, and related their longitudinal development to cognitive performance changes.MethodsTwenty-five patients (mean 17 years, range: 10-25 years) underwent 7-Tesla MRI and cognitive assessment. Nineteen patients were treated with whole-brain or focal RT 1-month to 20-years prior, while 6 non-irradiated patients with posterior-fossa tumors served as controls. CMBs were detected on 7T susceptibility-weighted imaging (SWI) using semi-automated software, a first use in this population.ResultsCMB detection sensitivity with 7T SWI was higher than previously reported at lower field strengths, with one or more CMBs detected in 100% of patients treated with RT at least 1-year prior. CMBs were localized to dose-targeted brain volumes with risk factors including whole-brain RT (p = 0.05), a higher RT dose (p = 0.01), increasing time since RT (p = 0.03), and younger age during RT (p = 0.01). Apart from RT dose, these factors were associated with impaired memory performance. Follow-up data in a subset of patients revealed a proportional increase in CMB count with worsening verbal memory performance (r = -0.85, p = 0.03).ConclusionsTreatment with RT during youth is associated with the chronic development of CMBs that evolve with memory impairment over time

    An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro).

    No full text
    BackgroundNeurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation.MethodsOne hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging. Utilizing RadART Pro, we collected clinical history, genomic sequencing, CNS imaging, and neurocognitive outcomes. We performed single nucleotide polymorphism (SNP) genotyping for candidate genes associated with neurocognition: COMT, BDNF, KIBRA, APOE, KLOTHO. Longitudinal neurocognitive testing were performed using validated computer-based CogState batteries. The imaging cohort was made of patients with available iron-sensitive (n = 28) and/or T2 FLAIR (n = 41) sequences. Cerebral microbleeds (CMB) were identified using a semi-automated algorithm. Volume of T2 FLAIR white matter lesions (WML) was measured using an automated method based on a convolutional neural network. Summary statistics were performed for patient characteristics, neurocognitive assessments, and imaging. Linear mixed effects and hierarchical models assessed patient characteristics and SNP relationship with neurocognition over time. Nested case-control analysis was performed to compare candidate gene carriers to non-carriers.ResultsCMB presence at baseline correlated with worse performance in 3 of 7 domains, including executive function. Higher baseline WML volumes correlated with worse performance in executive function and verbal learning. No candidate gene reliably predicted neurocognitive outcomes; however, APOE ϵ4 carriers trended toward worse neurocognitive function over time compared to other candidate genes and carried the highest odds of low neurocognitive performance across all domains (odds ratio 2.85, P=0.002). Hydrocephalus and seizures at diagnosis were the clinical characteristics most frequently associated with worse performance in neurocognitive domains (5 of 7 domains). Overall, executive function and verbal learning were the most frequently negatively impacted neurocognitive domains.ConclusionPresence of CMB, APOE ϵ4 carrier status, hydrocephalus, and seizures correlate with worse neurocognitive outcomes in pediatric cancer survivors, enriched with CNS tumors exposed to radiation. Ongoing research is underway to verify trends in larger cohorts

    NCOG-71. GENOME ASSOCIATIONS WITH NEUROCOGNITIVE OUTCOMES, CEREBRAL MICROBLEEDS (CMBS), AND BRAIN VOLUME AND WHITE MATTER (WM) CHANGES IN PEDIATRIC BRAIN TUMOR SURVIVORS

    No full text
    Abstract OBJECTIVE To identify genetic predictors of neurocognition, CMBs, brain volume, and WM changes in pediatric brain tumor survivors. METHODS Patients were selected from an existing cohort (RadART) if they had: 1) at least one neurocognitive evaluation using computer-based CogState; 2) available DNA; 3) standard imaging. Candidate gene or genome-wide genotyping was performed on all patients. CMBs were identified using a semi-automated algorithm developed in MATLAB. Volume of T2/FLAIR WM signal abnormality was measured using a semi-automated method based on a convolutional neural network. Brain volume and cortical thickness were measured using FreeSurfer volumetric analysis. Logistic and linear regression were done to compare phenotypes with candidate genotypes. Genome-wide efficient mixed-model analysis was done to compare neurocognition and CMBs. Gene set analysis was done using https://fuma.ctglab.nl/. RESULTS APOE4 was a candidate variant associated with non-lobar, larger volume CMBs (p< 0.05). At the GWAS-level (n=225), specific genes trended with visual memory, psychomotor function, and CMB count (p< 5x10-8). Using gene set analyses, there were gene set trends seen with CMB count and psychomotor function. Small sample size and low mutant allele frequency limited reliability of these findings. Preliminary volumetric analysis show reduced volume within the right parietal, medial occipital and inferior temporal lobes with increased cortical thickness in the left occipital and medial parietal lobe in patients carrying the ApoE4 allele. WM signal assessments are ongoing. CONCLUSION Genetic markers may be associated with neurocognition, CMBs, brain volume and WM changes in pediatric brain tumor survivors; however, larger cohorts are needed to confirm specific gene relevance

    PNOC015: Repeated convection-enhanced delivery of MTX110 (aqueous panobinostat) in children with newly diagnosed diffuse intrinsic pontine glioma

    Full text link
    BACKGROUND The objective of this study was to determine the safety, tolerability, and distribution of MTX110 (aqueous panobinostat) delivered by convection-enhanced delivery (CED) in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG) who completed focal radiation therapy (RT). METHODS Patients with DIPG (2-21 years) were enrolled after RT. CED of MTX110 combined with gadoteridol was completed across 7 dose levels (DL) (30-90 µM; volumes ranging from 3 mL to 2 consecutive doses of 6 mL). An accelerated dose escalation design was used. Distribution of infusate was monitored with real-time MR imaging. Repeat CED was performed every 4-8 weeks. Quality-of-life (QoL) assessments were obtained at baseline, every 3 months on therapy, and end of therapy. RESULTS Between May 2018 and March 2020, 7 patients who received a total of 48 CED infusions, were enrolled (median age 8 years, range 5-21). Three patients experienced dose-limited toxicities. Four grade 3 treatment-related adverse events were observed. Most toxicities were transient new or worsening neurologic function. Median overall survival (OS) was 26.1 months (95% confidence interval: 14.8-not reached). Progression-free survival was 4-14 months (median, 7). Cumulative percentage of tumor coverage for combined CED infusions per patient ranged from 35.6% to 81.0%. Increased CED infusions were negatively associated with self-reported QoL assessments. CONCLUSION Repeat CED of MTX110 with real-time imaging with gadoteridol is tolerable for patients with DIPG. Median OS of 26.1 months compares favorably with historical data for children with DIPG. The results support further investigation of this strategy in a larger cohort
    corecore