5,970 research outputs found

    A TEST OF CONTINGENT MARKET BID ELICITATION PROCEDURES FOR PIECEWISE VALUATION

    Get PDF
    Economists are frequently faced with the task of valuing commodity package components. The valuation of specific impacts of public policies is a case in point. Two contingent market bid elicitation procedures were tested for valuing changes in single components of multicomponent government program. Results of the test suggested that respondents provided more accurate component to piecewise valuation when a two-step bidding approach, rather than a one-step approach was used. Thus, there is evidence that a two-step approach which helps respondents to isolate valuations for package components is perhaps a preferable bid elicitation procedure for piecewise valuation.Research Methods/ Statistical Methods,

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    Correlation effects in ionic crystals: I. The cohesive energy of MgO

    Full text link
    High-level quantum-chemical calculations, using the coupled-cluster approach and extended one-particle basis sets, have been performed for (Mg2+)n (O2-)m clusters embedded in a Madelung potential. The results of these calculations are used for setting up an incremental expansion for the correlation energy of bulk MgO. This way, 96% of the experimental cohesive energy of the MgO crystal is recovered. It is shown that only 60% of the correlation contribution to the cohesive energy is of intra-ionic origin, the remaining part being caused by van der Waals-like inter-ionic excitations.Comment: LaTeX, 20 pages, no figure

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Influence of electron correlations on ground-state properties of III-V semiconductors

    Full text link
    Lattice constants and bulk moduli of eleven cubic III-V semiconductors are calculated using an ab initio scheme. Correlation contributions of the valence electrons, in particular, are determined using increments for localized bonds and for pairs and triples of such bonds; individual increments, in turn, are evaluated using the coupled cluster approach with single and double excitations. Core-valence correlation is taken into account by means of a core polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data, we obtain lattice constants which agree with experiment within an average error of -0.2%; bulk moduli are accurate to +4%. We discuss in detail the influence of the various correlation contributions on lattice constants and bulk moduli.Comment: 4 pages, Latex, no figures, Phys. Rev. B, accepte

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters

    Full text link
    We study the coherent inelastic diffraction of very weakly bound two body clusters from a material transmission grating. We show that internal transitions of the clusters can lead to new separate peaks in the diffraction pattern whose angular positions determine the excitation energies. Using a quantum mechanical approach to few body scattering theory we determine the relative peak intensities for the diffraction of the van der Waals dimers (D_2)_2 and H_2-D_2. Based on the results for these realistic examples we discuss the possible applications and experimental challenges of this coherent inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.
    • …
    corecore