4,147 research outputs found

    First-Principles Calculation of Electric Field Gradients and Hyperfine Couplings in YBa2Cu3O7

    Full text link
    The local electronic structure of YBa2Cu3O7 has been calculated using first-principles cluster methods. Several clusters embedded in an appropriate background potential have been investigated. The electric field gradients at the copper and oxygen sites are determined and compared to previous theoretical calculations and experiments. Spin polarized calculations with different spin multiplicities have enabled a detailed study of the spin density distribution to be made and a simultaneous determination of magnetic hyperfine coupling parameters. The contributions from on-site and transferred hyperfine fields have been disentangled with the conclusion that the transferred spin densities essentially are due to nearest neighbour copper ions only with marginal influence of ions further away. This implies that the variant temperature dependencies of the planar copper and oxygen NMR spin-lattice relaxation rates are only compatible with commensurate antiferromagnetic correlations. The theoretical hyperfine parameters are compared with those derived from experimental data.Comment: 14 pages, 12 figures, accepted to appear in EPJ

    Ground state properties of heavy alkali halides

    Full text link
    We extend previous work on alkali halides by calculations for the heavy-atom species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic effects are included by means of energy-consistent pseudopotentials, correlations are treated at the coupled-cluster level. A striking deficiency of the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from experimental values which is reduced to a maximum error of 2.4 % by taking into account electron correlation. Besides, we provide ab-initio data for in-crystal polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Heavy ion induced mutations in mammalian cells: Cross sections and molecular analysis

    Get PDF
    Our investigations of heavy ion-induced mutations in mammalian cells, which had been begun a few years ago, were systematically continued. For the first time, it was possible to cover a large LET range with a few kinds of ions. To do this, both UNILAC and SIS were used to yield comparable data for a large energy range. This is a necessary condition for a comprehensive description of the influence of such ion parameters as energy and LET. In these experiments, the induced resistance against the poison 6-thioguanin (6-TG), which is linked to the HPRT locus on the genome, is being used as mutation system. In addition to the mutation-induction cross-section measurements, the molecular changes of the DNA are being investigated by means of Multiplex PCR ('Polymerase Chain Reaction') gene amplification. From these experiments we expect further elucidation of the mutation-inducing mechanisms composing the biological action of heavy-ion radiation

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Influence of electron correlations on ground-state properties of III-V semiconductors

    Full text link
    Lattice constants and bulk moduli of eleven cubic III-V semiconductors are calculated using an ab initio scheme. Correlation contributions of the valence electrons, in particular, are determined using increments for localized bonds and for pairs and triples of such bonds; individual increments, in turn, are evaluated using the coupled cluster approach with single and double excitations. Core-valence correlation is taken into account by means of a core polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data, we obtain lattice constants which agree with experiment within an average error of -0.2%; bulk moduli are accurate to +4%. We discuss in detail the influence of the various correlation contributions on lattice constants and bulk moduli.Comment: 4 pages, Latex, no figures, Phys. Rev. B, accepte
    • …
    corecore