219 research outputs found

    Lymphatic Filariasis: Transmission, Treatment and Elimination

    Get PDF
    Lymphatic filariasis (LF) is a mosquito-borne, tropical disease caused by filarial worms. Infection can lead to disabling chronic disease, characterized by swelling of extremities or external genitalia (lymphoedema, elephantiasis and hydrocele). Mass treatment with antifilarial drugs is used to reduce the parasite load in the population, in order to reduce transmission and prevent disease. This is so effective that elimination of LF seems possible. Using a mathematical for lymphatic filariasis transmission in Pondicherry, India, we predicted how long yearly mass treatment would have to be continued to achieve elimination. Six annual treatments with the recommended combination of diethylcarbamazine (DEC) and albendazole would be sufficient if population coverage is 65% per round. Only four rounds would do if coverage is 80%. The required duration of mass treatment increases with endemicity level. In a comparison of transmission efficiency for different mosquito species, we found that the relationship between infection intensity in humans and the number of infective larvae developing in mosquitoes differed markedly. Mosquito characteristics may largely influence elimination prospects and predictions for Pondicherry cannot be generalized. A further study concentrated on the role of acquired immunity. We found that existing models for such immunity, which predict a decline in infection intensity in older humans, are not valid for lymphatic filariasis. We also quantified the effects of drugs treatment on different parasite stages: DEC and ivermectin were found to affect a very large proportion of microfilariae and adult worms; these drugs were even more effective when given in combination with albendazole. In conclusion, prospects for LF elimination by mass treatment are good if population coverage is sufficiently high, but the required duration depends on local transmission dynamics, endemicity level, and the efficacy of employed treatment regimens

    LYMFASIM, a simulation model for predicting the impact of lymphatic filariasis control: quantification for African villages.

    Get PDF
    LYMFASIM is a simulation model for lymphatic filariasis transmission and control. We quantified its parameters to simulate Wuchereria bancrofti transmission by Anopheles mosquitoes in African villages, using a wide variety of reported data. The developed model captures the general epidemiological patterns, but also the differences between communities. It was calibrated to represent the relationship between mosquito biting rate and the prevalence of microfilariae (mf) in the human population, the age-pattern in mf prevalence, and the relation between mf prevalence and geometric mean mf intensity. Explorative simulations suggest that the impact of mass treatment depends strongly on the mosquito biting rate and on the assumed coverage, compliance and efficacy. Our sensitivity analysis showed that some biological parameters strongly influence the predicted equilibrium pre-treatment mf prevalence (e.g. the lifespan of adult worms and mf). Other parameters primarily affect the post-treatment trends (e.g. severity of density dependence in the mosquito uptake of infection from the human blood, between-person variability in exposure to mosquito bites). The longitudinal data, which are being collected for evaluation of ongoing elimination programmes, can help to further validate the model. The model can help to assess when ongoing elimination activities in African populations can be stopped and to design surveillance schemes. It can be a valuable tool for decision making in the Global Programme to Eliminate Lymphatic Filariasis

    Modeling the impact and costs of semiannual mass drug administration for accelerated elimination of lymphatic filariasis

    Get PDF
    textabstractThe Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simulation model to estimate how many annual or semiannual MDA rounds would be required to eliminate LF for Indian and West African scenarios with varied pre-control endemicity and coverage levels. Results were used to estimate total program costs assuming a target population of 100,000 eligibles, a 3% discount rate, and not counting the costs of donated drugs. A sensitivity analysis was done to investigate the robustness of these results with varied assumptions for key parameters. Model predictions suggested that semiannual MDA will require the same number of MDA rounds to achieve LF elimination as annual MDA in most scenarios. Thus semiannual MDA programs should achieve this goal in half of the time required for annual programs. Due to efficiency gains, total program costs for semiannual MDA programs are projected to be lower than those for annual MDA programs in most scenarios. A sensitivity analysis showed that this conclusion is robust. Semiannual MDA is likely to shorten the time and lower the cost required for LF elimination in countries where it can be implemented. This strategy may improve prospects for global elimination of LF by the target year 2020

    (Un)Healthy in the City:Respiratory, Cardiometabolic and Mental Health Associated with Urbanity

    Get PDF
    Research has shown that health differences exist between urban and rural areas. Most studies conducted, however, have focused on single health outcomes and have not assessed to what extent the association of urbanity with health is explained by population composition or socioeconomic status of the area. Our aim is to investigate associations of urbanity with four different health outcomes (i.e. lung function, metabolic syndrome, depression and anxiety) and to assess whether these associations are independent of residents' characteristics and area socioeconomic status.Our study population consisted of 74,733 individuals (42% males, mean age 43.8) who were part of the baseline sample of the LifeLines Cohort Study. Health outcomes were objectively measured with spirometry, a physical examination, laboratory blood analyses, and a psychiatric interview. Using multilevel linear and logistic regression models, associations of urbanity with lung function, and prevalence of metabolic syndrome, major depressive disorder and generalized anxiety disorder were assessed. All models were sequentially adjusted for age, sex, highest education, household equivalent income, smoking, physical activity, and mean neighborhood income.As compared with individuals living in rural areas, those in semi-urban or urban areas had a poorer lung function (β -1.62, 95% CI -2.07;-1.16), and higher prevalence of major depressive disorder (OR 1.65, 95% CI 1.35;2.00), and generalized anxiety disorder (OR 1.58, 95% CI 1.35;1.84). Prevalence of metabolic syndrome, however, was lower in urban areas (OR 0.51, 95% CI 0.44;0.59). These associations were only partly explained by differences in residents' demographic, socioeconomic and lifestyle characteristics and socioeconomic status of the areas.Our results suggest a differential health impact of urbanity according to type of disease. Living in an urban environment appears to be beneficial for cardiometabolic health but to have a detrimental impact on respiratory function and mental health. Future research should investigate which underlying mechanisms explain the differential health impact of urbanity

    Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis : a modelling study

    Get PDF
    Background: Lymphatic filariasis is targeted for elimination as a public health problem by 2020. The principal approach used by current programmes is annual mass drug administration with two pairs of drugs with a good safety profile. However, one dose of a triple-drug regimen (ivermectin, diethylcarbamazine, and albendazole) has been shown to clear the transmissible stage of the helminth completely in treated individuals. The aim of this study was to use modelling to assess the potential value of mass drug administration with the triple-drug regimen for accelerating elimination of lymphatic filariasis in different epidemiological settings. Methods: We used three different transmission models to compare the number of rounds of mass drug administration needed to achieve a prevalence of microfilaraemia less than 1% with the triple-drug regimen and with current two-drug regimens. Findings: In settings with a low baseline prevalence of lymphatic filariasis (5%), the triple-drug regimen reduced the number of rounds of mass drug administration needed to reach the target prevalence by one or two rounds, compared with the two-drug regimen. For areas with higher baseline prevalence (10–40%), the triple-drug regimen strikingly reduced the number of rounds of mass drug administration needed, by about four or five, but only at moderate-to-high levels of population coverage (>65%) and if systematic non-adherence to mass drug administration was low. Interpretation: Simulation modelling suggests that the triple-drug regimen has potential to accelerate the elimination of lymphatic filariasis if high population coverage of mass drug administration can be achieved and if systematic non-adherence with mass drug administration is low. Future work will reassess these estimates in light of more clinical trial data and to understand the effect on an individual country's programme

    Progress towards onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: Epidemiological evaluation results

    Get PDF
    Background: The African Programme for Onchocerciasis Control (APOC) was created in 1995 to establish community-directed treatment with ivermectin (CDTi) in order to control onchocerciasis as a public health problem in 20 African countries that had 80 % of the global disease burden. When research showed that CDTi may ultimately eliminate onchocerciasis infection, APOC was given in 2008 the additional objective to determine when and where treatment can be safely stopped. We report the results of epidemiological evaluations undertaken from 2008 to 2014 to assess progress towards elimination in CDTi areas with ≥6 years treatment. Methods: Skin snip surveys were undertaken in samples of first-line villages to determine the prevalence of O. volvulus microfilariae. There were two evaluation phases. The decline in prevalence was evaluated in phase 1A. Observed and model-predicted prevalences were compared after correcting for endemicity level and treatment coverage. Bayesian statistics and Monte Carlo simulation were used to classify the decline in prevalence as faster than predicted, on track or delayed. Where the prevalence approached elimination levels, phase 1B was launched to determine if treatment could be safely stopped. Village sampling was extended to the whole CDTi area. Survey data were analysed within a Bayesian framework to determine if stopping criteria (overall prevalence <1.4 % and maximum stratum prevalence <5 %) were met. Results: In phase 1A 127 665 people from 639 villages in 54 areas were examined. The prevalence had fallen dramatically. The decline in prevalence was faster than predicted in 23 areas, on track in another 23 and delayed in eight areas. In phase 1B 108 636 people in 392 villages were examined in 22 areas of which 13 met the epidemiological criteria for stopping treatment. Overall, 32 areas (25.4 million people) had reached or were close to elimination, 18 areas (17.4 million) were on track but required more years treatment, and in eight areas (10.4 million) progress was unsatisfactory. Conclusions: Onchocerciasis has been largely controlled as a public health problem. Great progress has been made towards elimination which already appears to have been achieved for millions of people. For most APOC countries, nationwide onchocerciasis elimination is within reach

    Health Seeking Behaviour and Utilization of Health Facilities for Schistosomiasis-Related Symptoms in Ghana

    Get PDF
    The World Health Organization recommends that long-term benefit of schistosomiasis control should include treatment in local health facilities. This means that patients should visit a hospital or clinic with their complaints. However, little is known about whether they do so. We conducted a study in three regions of Ghana and interviewed two thousand people about whether they recently had schistosomiasis-related symptoms such as blood in urine or blood in faeces, and what they had done about it. We included fever (mostly caused by malaria) for comparison. We found that 40% of patients with urinary symptoms sought care compared to 70% of those with intestinal symptoms and 90% with fever. Overall, only 20% of all schistosomiasis-related symptoms were reported to a hospital or clinic, compared to 30% for fever. Self-medication with allopathic (i.e., orthodox) medicines was the main alternative. Our study showed that the most important determinant for seeking health care or visiting a health facility is perceived severity of the symptom. Factors such as age, sex, socio-economic status and geographic region showed no impact or a clear pattern. We conclude that many schistosomiasis patients do not visit a health facility, the only place with effective drugs, necessitating additional control measures
    • …
    corecore