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SUMMARY

LYMFASIM is a simulation model for lymphatic filariasis transmission and control. We quantified its parameters to

simulate Wuchereria bancrofti transmission by Anopheles mosquitoes in African villages, using a wide variety of reported

data. The developedmodel captures the general epidemiological patterns, but also the differences between communities. It

was calibrated to represent the relationship between mosquito biting rate and the prevalence of microfilariae (mf) in the

human population, the age-pattern in mf prevalence, and the relation between mf prevalence and geometric mean mf

intensity. Explorative simulations suggest that the impact of mass treatment depends strongly on the mosquito biting rate

and on the assumed coverage, compliance and efficacy. Our sensitivity analysis showed that some biological parameters

strongly influence the predicted equilibrium pre-treatment mf prevalence (e.g. the lifespan of adult worms and mf). Other

parameters primarily affect the post-treatment trends (e.g. severity of density dependence in the mosquito uptake of

infection from the human blood, between-person variability in exposure to mosquito bites). The longitudinal data, which

are being collected for evaluation of ongoing elimination programmes, can help to further validate the model. The model

can help to assess when ongoing elimination activities in African populations can be stopped and to design surveillance

schemes. It can be a valuable tool for decision making in the Global Programme to Eliminate Lymphatic Filariasis.

Key words: lymphatic filariasis, Wuchereria bancrofti, Anopheles, transmission dynamics, simulation model, Africa, mass

treatment, elimination.

INTRODUCTION

Lymphatic filariasis (LF) is a tropical disease, which

is caused by lymphatic-dwelling filarial parasites and

is transmitted by mosquitoes that engorge the im-

mature larval forms (microfilariae, mf) with a blood

meal. Wuchereria bancrofti is responsible for >90%

of all infections worldwide, while Brugia malayi

and Brugia timori account for the remaining infec-

tions. Chronic infection with LF can cause gross

swelling of extremities or the scrotum (lymphoedema,

hydrocoele). The Global Programme to Eliminate

Lymphatic Filariasis aims to eliminate this debili-

tating disease as a public health problem (World

HealthOrganization, 2006). Yearlymass treatment is

provided to reduce themf reservoir to such low levels

that transmission becomes insignificant and is even-

tually interrupted. However, questions are being

raised about the feasibility of elimination (Gyapong

and Twum-Danso, 2006). In fact, we do not know

how long mass drug administration should be con-

tinued, how that depends on local conditions, or how

we can establish that transmission interruption is

achieved. Models can help to answer these questions

and further development ofmathematical models has

been identified as a priority in LF research (Dadzie,

Basáñez and Richards, 2004).

Several models have been developed for the

simulation of LF transmission and control (Chan

et al. 1998; Plaisier et al. 1998; Rochet, 1990). All

three models were quantified for W. bancrofti infec-

tion and validated using the detailed longitudinal

epidemiological and entomological data that were

available from urban Pondicherry in India (Chan

et al. 1998; Subramanian et al. 2004). Thus far, the

role of these models in decision support in control

programmes is still modest. The main reason is that

model predictions made for Pondicherry are not

necessarily generalisable to other areas. If adjust-

ments are made for differences in exposure to

mosquito bites, then the model should be valid

for other Indian areas, assuming that the basic bio-

logical assumptions are correct. However, the model

cannot be used in regions with other vector or

parasite species, because of known differences in the
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transmission dynamics (Southgate, 1992; Snow and

Michael, 2002; Snow et al. 2006). To support deci-

sion making in the elimination programmes world-

wide, we need vector-parasite specific, validated

model variants (Dadzie et al. 2004; Stolk, de Vlas and

Habbema, 2006).

The LYMFASIM program provides a flexible

framework for simulating LF transmission and con-

trol (Plaisier et al. 1998). It can easily be adjusted to

reflect the transmission dynamics in specific areas or

to test models with alternative assumptions about the

mechanisms involved in transmission. In this paper,

we show how the parameters of LYMFASIM can

be quantified to simulate W. bancrofti transmission

by Anopheles mosquitoes in African communities.

Emphasis is on capturing the general epidemiological

patterns, but also the differences between com-

munities. Therefore, the model is tested against

cross-sectional data from many different locations,

including data on the relationship between mosquito

biting rates and local endemicity levels. A detailed

sensitivity analysis is performed to explore how

changes in parameter values influence the predicted

long-term impact of mass treatment. For another

example of the applicability of such an approach to

modelling the transmission and control of another

vector-borne infection, we refer to Smith et al. (2008,

in this special issue).

MATERIALS AND METHODS

The LYMFASIM simulation model

LYMFASIM simulates the spread ofW. bancrofti in

a human community and the impact of control

measures. A formal mathematical description of the

model is provided elsewhere (Plaisier et al. 1998).

Appendix 1 summarizes itsmain features andTable 1

explains the symbols that are used in the following

section. A schematic representation of the variables

and processes involved in transmission is provided in

Fig. 1.

Quantification of the model for Africa

In a previous study, all parameters of LYMFASIM

were quantified for simulating the transmission of

Wuchereria bancrofti by Culex quinquefasciatus mos-

quitoes in Pondicherry, India (Subramanian et al.

2004). We now set out to quantify the parameters for

Africa. However, we changed the assumptions about

immunity. The Pondicherry model included strong

acquired immunity to explain that infection levels

declined in elderly individuals (Subramanian et al.

2004). Epidemiological data from Africa provide no

indication of patterns consistent with such acquired

immunity (Stolk et al. 2004), and we discard it in the

current model.
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Fig. 1. Schematic representation of LYMFASIM, showing the processes that determine parasite transmission and

the worm load in humans. The diagram shows the time-dependent model variables (boxes) and their interrelation

(arrows). The associated model parameters are given along the arrows. Subscript ‘ i ’ indicates variables and parameters

that vary between individuals. Processes related to optional immune responses are not included in the figure. See

Appendix 1 for further explanation.
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Some model parameters can take the same value in

the models for Pondicherry and Africa because their

value is independent of the area under study and

vector species. This presumably applies to para-

meters that relate to infection in the human host,

including several parameters of the parasite life cycle

(Tl, Ti, Tmf, r0, aTl) and the aggregation parameter

(k) of the negative binomial distribution that quan-

tifies the stochastic variability in mf counts in human

blood samples. For the age-pattern in human ex-

posure to mosquitoes, we assume that the exposure

is zero in newborns (E0) and that the maximum ex-

posure is achieved in adults at age 20.

The uptake curve, which describes the relation

between the mf density in human blood and the

number of L3 developing inmosquitoes after a blood

meal, depends on the vector species involved in

transmission. The uptake curve was quantified for

Anopheles by analyzing published data from feeding

experiments (see Appendix 2). The estimated curve

shows ‘facilitation’, which means that the number of

L3 developing in mosquitoes from a blood meal

increases initially at a rate higher than that expected

from a linearly proportional relationship with the

mf density in the human blood. Only at higher mf

densities, limiting mechanisms seem to operate so

that saturation occurs (‘ limitation’).

The demographic parameters vary considerably

between India and Africa, but within Africa they also

vary between locations. For the current study, we

take the overall population in Sub Saharan Africa

as reference. We used the Revised Global Burden

of Disease 2002 estimates of numbers of deaths by

age and sex in the WHO ‘AFRO Region’ as a whole

to calculate average age-specific death rates. (Data

can be downloaded in spreadsheet format from the

World Health Organization website, www.who.int.)

These death rates were then used to construct a life

table for the African region. Age-specific fertility

rates for Sub-Sahara Africa were available from

the US Census Bureau (2004). Exact quantification

of fertility and mortality rates does not necessarily

result in realistic age-structure of the simulated

population, if historic trends in the rates over time

and migration effects are ignored. To verify whether

the age-structure of the simulate population is suffi-

ciently adequate, we compared it with published

population pyramids for sub Saharan Africa (US

Census Bureau, 2004).

The average monthly biting rate (mbr) was the

only parameter which we assumed to be varying

between communities.We adjusted this parameter to

simulate different endemicity levels. From published

entomological studies, which measured the annual

biting rate based on repeated all-night human land-

ing catches, we estimated the range of possible values

for the average mbr.

Two parameters were unknown and were esti-

mated by fitting the model to data : (1) the success

ratio sr, i.e. the probability that an infectious L3

larva, which is released during a mosquito blood

meal, survives to develop into a mature adult worm;

and (2) the variability in exposure to mosquito bites

(defined by shape parameter aE of the gamma dis-

tribution). The Pondicherry-derived estimates for

these parameters cannot be used because they were

conditional on the inclusion of acquired immunity.

In fact, a third parameter is also unknown, namely

the fraction of the L3 larvae resulting from a single

blood meal that is eventually released by a mosquito

(v). However, v and sr are linear multiplication

factors in the same sequence of calculations and

cannot be estimated independently ; therefore, we

fixed v at a biologically plausible value of 0.1 and only

estimated the success ratio sr.

Fitting procedure

We did a grid search to determine the values for the

two unknown parameters that resulted in the best fit

of model outcomes to data, based on visual assess-

ment. For each pair of values for the success ratio (sr)

and variability in exposure (aE), we performed a

series of 3100 simulation runs. Each series consisted

of 100 repeated runs for 31 different mbr values,

ranging from 100 to 4000 bites per person per month

(mbr 100, 150, …, 1000; larger increments there-

after). All runs started with a 125-year ‘burn-in’

period to achieve a dynamic equilibrium endemicity

level and a population with stable age-sex compo-

sition and an average size of about 6000 individuals.

The results of each series of runs were summarized,

to allow comparison with field data.

A well-fitting model had to satisfy the following

three criteria. Firstly, the simulated relationship

betweenmbr and overall mf prevalence should match

that observed in various localities of the African re-

gion. Observed data about the relationship between

overall mf prevalence and average monthly biting

rate were obtained from a PubMed literature search.

We only included studies from locations in Sub-

Saharan Africa where Anopheles mosquitoes act as

the main vectors. Studies were excluded if the largest

part of sampled mosquitoes were C. quinquefasciatus

and notAnopheles. Selected studies used repeated all-

night human landing catches to measure the biting

rate. Because only few studies were available, we did

not impose selection criteria on the type of test used

for diagnosing microfilaraemia in this part of the

fitting procedure.

The simulation results are represented by a single

curve, which provides the expected average mf

prevalence by mbr. We anticipated that deviations

of observations from the theoretical curve would

be large, because the field data are subject to

many sources of variation that are not considered in

the model. To assess whether these deviations are

still acceptable (i.e. whether they represent natural
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variationor indicatedeviations thatwould cast doubts

on the model), we calculated the range of possible

model outcomes that would be obtained if model re-

sultswere subjected to the same sources of variation as

those in the field data. Unpublished field data from

Ghana suggest that the annual biting rate (or simi-

larly, the annual mean mbr) can vary over time by a

factor of approximately 3 around its average value (Dr

D. Boakye, personal communication). This reflects

measurement error and sampling variation, but also

true fluctuations in the vector density and biting rate

over time. We assumed that the variation around

the log (mbr) is described by a uniform distribution,

which ranges from log (mbr/3) to log (3 mbr). We also

considered sampling variation in measuring human

mf prevalence levels, assuming that the variability is

described by a normal distribution, with the average

simulated mf prevalence as expected value p and

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1xp)=N

p
, i.e. using the nor-

mal approximation to the binomial distribution

(valid if p N or (1xp) N>5 or 10 (Armitage and

Berry, 1994)). For N, we took a value of 100, which

reflected the median population size in the obser-

vations. For each simulated situation, we assessed

the range of possible outcomes for the mbr and

mf prevalence relationship, by randomly sampling

from the probability distributions that describe the

variability. We then determined the 2.5th to 97.5th

percentile range for the possible outcomes.

Secondly, the predicted quantitative relation

between mf prevalence and geometric mean mf in-

tensity (GMI) levels in mf-positives should match

with observations. To prevent bias by variation in

the age-composition of the sampled populations, we

plotted observed and simulated values by age group.

Simulation results are summarized in a curve that

shows average GMI by mf prevalence. Observed

data were obtained by searching PubMed for pub-

lished studies presenting age-specific data on mf

prevalence and geometric meanmf intensity for Sub-

Saharan African communities. The search strategy

with inclusion and exclusion criteria is documented

elsewhere (Stolk et al. 2004). We only considered

studies that used mf counts in 20 mL night blood

smears for the mf counts, because this is the default

diagnostic test embedded in LYMFASIM.

Thirdly, simulated age-patterns of mf prevalence

should mimic the observed patterns for different

endemicity levels. For testing this, we used the same

data as in the assessment of the relation between mf

prevalence and GMI, and additional studies that

only presented prevalence data. Observed data were

grouped according to the overall mf prevalence level

in the community (very low, low, intermediate or

high mf prevalence). These observations were then

compared with model-predicted age-patterns in mf

prevalence for different mbr values. Biting rates were

not known in the field studies; we selected values

for the mbr that matched with the average overall

prevalence in each of the four groups. Unsuccessful

runs, which by chance died out during the burn-in

phase of the simulation while a stable endemic

situation was expected, were not included in the

current analysis. This only occurred with low mbr

values.

Simulations based on nominal parameter values

and sensitivity analysis

To investigate the behaviour of the model, we

simulated the impact of a 6-year mass treatment

programme on trends in mf prevalence. In our

default simulations, we performed four series of 500

repeated runs, using the parameter values that were

derived in the current study. The four series only

differed with respect to the assumed biting rate

(mbr=500, 750, 1000 or 2000). Assumptions about

treatment are given in Table 3. In view of the large

uncertainty about the effects of drug treatment on

adult worms, we do not claim to simulate a specific

treatment regimen. Yet, the chosen parameters are

in the range of ‘guesstimates ’ for existing antifilarial

drugs and drug combinations (see Stolk et al. (2005)

for a discussion of available evidence). Each simu-

lation run starts with a burn-in period and the

resulting endemic equilibrium situation is taken as

pre-treatment, time 0, situation. At time 0, the first

treatment is provided and subsequent treatments are

given with one-year intervals. The population is

followed for 20 years after the start of treatment, via

yearly epidemiological surveys. In years 0, 1, 2, 3, 4,

and 5, the epidemiological surveys just precede the

treatment. The results per series of runs were sum-

marized by calculating the average mf prevalence at

each survey, together with the 5th to 95th percentile

range.

In a univariate sensitivity analysis, we assessed

how the projected trends changed under other model

parameter assumptions. With the mbr fixed at 750

bites per person per month, we performed new series

of 500 repeated runs each. In each series, one of

the model assumptions was assigned a different value

from that in the default parameterisation; all other

parameters kept their nominal value. Alternative

values were usually chosen by multiplying the

nominal value by 2/3 or 3/2 (or, if the nominal

value of a proportion p was >50%, by multiplying

(100xp) by these factors). For nominal proportions

of 0% or 100% we chose alternative values that were

still considered realistic : we used 0.40 as alternative

value for relative exposure at birthE0 (0 in the default

model) and 85% as alternative value for the fraction

mf killed per treatment (100% in the default model).

Other parameters were treated in a more qualitative

manner. The demographic parameters were changed

as a group, to simulate a younger population with

somewhat higher fertility rates and higher mortality

rates in adults (representing the lowest income
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countries in sub-Saharan Africa). The uptake curve

was replaced by other curves with weaker or stronger

density dependence, corresponding to the confidence

interval around the density-dependence parameter of

the nominal equation (see Appendix 2). As alterna-

tive for the semi-systematic compliance pattern de-

scribed above, we considered completely random or

completely systematic compliance patterns. Lastly,

as alternative for random variability in the fraction of

worms killed by treatment, we considered a situation

where treatment effects vary between but not within

individuals. i.e. any variation in treatment effects is

related to individual characteristics and some indi-

viduals always have a good response to treatment,

while others always respond poorly.

RESULTS

Quantification of the model for Africa

The life table and fertility rates are shown in Fig. 2A

and B (solid lines). With these parameters, the

pyramidal-shaped structure of the African popu-

lation is reasonably well approximated (Fig. 2C, grey

bars).

Table 1 gives the values of other LYMFASIM

parameters. The estimated value for parameter

aE was 0.26, indicating that the probability distri-

bution of exposure levels to mosquito bites is very

skewed. The estimated value for the parameter srwas

0.00088.

With the estimated parameter values, LYMFA-

SIM predictions fitted well to the epidemiological

data from the African region (Fig. 3). Data about the

relationship between the average mbr and overall mf

prevalence were available from 11 locations in 4

countries (Table 2). As Fig. 3A illustrates, themodels

could simulate the entire range of observed mf

prevalence levels, with values up to 40%, by varying

the monthly biting rate parameter within a realistic

range. The grey-shaded area in Fig. 3A indicates that

most observations are within the range of possible

model outcomes if model projections were subjected

to the same sources of variation as the field data

(see Materials and Methods section above for ex-

planation). Fig. 3B shows that the model-predicted

relation between mf prevalence and geometric mean

mf intensity in the positives reflects the general pat-

tern in thedata from9locations in4studies (Brengues,

1975; Gyapong et al. 1993, 1998; Boakye et al. 2004).

The biting rate does not influence this relationship.

Fig. 3C shows that the predicted age-prevalence

pattern captures themain trend in locationswith very

low, low, intermediate or high overall mf prevalence.

Data came from the 4 studies cited above, plus 7 other

studies (McGregor, Hawking and Smith, 1952;

McFadzean, 1954; Brengues, Subra and Bouchite,

1969; Juminer,Diallo andDiagne, 1971; Ripert et al.

1982; Akogun, 1991; Anosike et al. 2005). The mf

prevalence increases with host age until a stable level

is reached in adults. The biting rate only influences

the average mf prevalence level and not the shape of

the age-prevalence pattern.

Default simulations and sensitivity analysis

Fig. 4 shows the results of our simulations using

the nominal parameter values for areas with varying
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Fig. 2. Quantification of demographic parameters in

LYMFASIM for modelling an African population.

A: Survival curve, showing the survival probability as a

function of age. B: Age-specific fertility rates, expressed

as the mean number of births per female per year.

C: Age-structure of the population that is simulated with

the specified survival curve and fertility rates. The solid

lines in A and B and the grey bars in C correspond to the

default assumptions. The dotted lines and white bars give

the alternative assumption which was used in the

sensitivity analysis of simulating a younger population

(with higher fertility and higher adult mortality rates).

Black diamonds show published estimates of the

population pyramid for the sub Saharan Africa

population in 2002 (US Census Bureau, 2004).
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average mbr, with the treatment assumptions of

Table 3. Mass treatment led to elimination in areas

with low average biting rates (mbr=500), but to rapid

recrudescence in areas with high biting rates

(mbr=1000 or 2000). In areas with a biting rate of

750, the intervention reduced mf prevalence to low

levels, but there was a tendency for slow recrud-

escence. (The grey area in Fig. 4 does not have the

same interpretation as that of Fig. 3A. The range

of possible outcomes in Fig. 4 is much narrower,

because model outcomes are conditional on the

assumed constant mbr value and because they ignore

the non-simulated variability in mf prevalence

measurement resulting from random sampling of the

human population.)

Fig. 5 shows the results of the sensitivity analysis

for a location with mbr=750. Four of the seven

parasite biology parameters had a strong influence on

the predicted mf prevalence levels before and after

treatment, namely, the average worm lifespan, the

rate of mf production per female worm, the average

mf lifespan, and the success ratio of L3 larvae be-

coming established worms. While the strength and

direction of density dependence in the uptake of

infection by the mosquito barely influenced the

pre-treatment mf prevalence, they had a very strong

impact on the long-term impact of mass treatment

and elimination prospects. Of the exposure-related

parameters, the variability in exposure was most

influential. Increased variability reduced the pre-

treatment mf prevalence, but also led to faster re-

crudescence of infection after cessation of treatment.

Higher values for the exposure of newborns and

lower values of the age at which exposure achieves its

maximum both resulted in a somewhat higher pre-

treatment mf prevalence, but had little impact on the

observed value after treatment. The variability in mf

counts determined the probability of false-negative

outcomes in mf counts, but not the underlying true

level of infection. Its influence was largest in the pre-

treatment situation. The mf prevalence was some-

what lower in a younger population. The impact

of mass treatment was strongly reduced when we

assumed lower coverage, systematic compliance, or a

lower treatment effect on adult worms. The amount

of variability in the latter effect was not very im-

portant, as long as the variation occurred at random.

However, if drug efficacy varied systematically be-

tween persons (so that some people always respond

poorly, while others might have a good response), the

overall impact of mass treatment was substantially

reduced.

DISCUSSION

With the advancement of the Global Programme to

Eliminate Lymphatic Filariasis, there is a growing

demand formodels that predict the long-term impact

Table 1. LYMFASIM parameters with their nominal values for simulating transmission of lymphatic

filariasis by Anopheles mosquitoes in African communities

Parameter symbol and description
Nominal
value Source

mbr Monthly biting rate, i.e. average number of mosquito bites per
adult person per month (range of possible values)

100–4000 This paper

E0 Relative exposure at birth (fraction of average exposure in adults) 0 Expert opinion
amax Age at which exposure to mosquitoes reaches its maximum level 20.0 (Subramanian et al. 2004)
aE Shape-parameter for the gamma-distribution describing variability

in exposure to mosquito bites between individuals
0.26 This paper

a Parameters of the mathematical function describing the uptake
of infection by Anopheles mosquitoes (the ‘uptake curve’)*

1.666 This paper
b 0.027 (Appendix 2)
c 1.514
v Fraction of the L3 larvae, resulting from a single blood meal,

that is released by a mosquito
0.1 Expert opinion

sr Success ratio, i.e. the probability that an infectious L3 larva, which
is released during a mosquito blood meal, survives to develop
into a mature adult worm (fraction)

0.00088 This paper

Ti Duration of the immature stage of the parasite in the human
host (months)

8.0 (World Health
Organization, 1992)

Tl Average lifespan of adult parasites (years) 10.0 (Subramanian et al. 2004)
aTl Shape parameter of the Weibull distribution that describes the

between-worm variability in the worm lifespan (mean=1)
2.0 Expert opinion

r0 No. of mf produced per female parasite (per month per 20 mL of
peripheral blood) in the presence of at least 1 male worm

0.58 (Subramanian et al. 2004)

Tmf Mean lifespan of microfilaria (months) 10.0 (Plaisier et al. 1999)
k Aggregation parameter of the negative binomial distribution

describing the variability in mf counts in 20 mL blood smears
for an individual

0.33 (Subramanian et al. 2004)

* L3=a(1xexp (x(bM)c). See Appendix 2 for further explanation.
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of control measures.We quantified the LYMFASIM

simulation model (Plaisier et al. 1998) for use in

African villages where Anopheles species act as main

vectors, using a wide variety of reported data.

Particular effort was made to test whether the model

adequately captured general epidemiological patterns

and differences between communities. By varying

the average monthly biting rate within a realistic

range (of about 100 to 4000 bites per person per

month), we could simulate the entire range of ob-

servedmf prevalence levels, which ranged up to 40%.

The relationship between mf prevalence and geo-

metric mean mf intensity in the mf-positives, as well

as the general age-patterns of mf prevalence matched

with observations.

Model behaviour

We performed large numbers of simulations to

examine whether the model behaved as expected and

to provide insight into the influence of the many

model parameters on the predictions. The model-

predicted trends in mf prevalence during and after

a 6-year mass treatment programme show that

the elimination prospects are best in areas with

low biting rates and low pre-treatment endemicity

levels. The probability and rate of recrudescence

after stopping treatment increase with higher biting

rate and pre-treatment endemicity levels. These

predictions are plausible, but remain to be validated

against observed data (see below).

The sensitivity analysis provides much infor-

mation about the effects of parameter values. Ad-

justing the success ratio, average worm burden, rate

of mf production per female worm, and average mf

lifespan resulted in major changes in the predicted

pre-treatment mf prevalence, implying that the

predictions are no longer in agreement with the data

of Fig. 3A and that post-treatment predictions are

not valid. This does not necessarily mean that the

alternative parameters values are unrealistic : a better

fit might be obtained by adjusting the fitted or other

model parameters.

Our sensitivity analysis confirmed the importance

of density dependence assumptions as reported by

others (Duerr et al. 2005). We have paid particular

attention to the quantification of the uptake curve, but

some uncertainty remained about the strength of

density dependence. Changing these assumptions

had no impact on the predicted pre-treatment mf

prevalence level or the goodness of fit in Fig. 3 (not

shown). Yet, it strongly influenced the predicted

post-treatment prevalence 20 years later. Thus, the

remaining uncertainty about the strength of density

dependence hinders accurate predictions of long-

term effects ofmass treatment.We also confirmed the

importance of variability in exposure to mosquito

bites for elimination prospects (Duerr et al. 2005).

A higher degree of variability causes stronger
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Fig. 3. Comparison of model outcomes (based on

nominal parameter values, Table 1) with data collated

from literature. A: Relationship between monthly biting

rate (mbr) and overall mf prevalence in the population.

The solid line corresponds to model predictions, while

the markers represent data presented in Table 2.

The grey-shaded area shows the range of possible model

outcomes if time-dependent or measurement error

variation in the mbr and sampling variation in mf

prevalence is taken into account (see Materials and

Methods for further explanation). B: Relationship

between observed mf prevalence and geometric mean mf

intensity (GMI) in 20 mL of blood, based on age-specific

data. The overlapping lines show the model-predicted

relation for monthly biting rates of 500, 750, 1000 and

2000. The markers show the observations; observations

that were made in different age groups from the same

community share the same symbol. C: Relationship

between mf prevalence and host age. The thin grey lines

show the observed age-patterns in different communities.

Different line types were used for villages with very low

(dashed), low (dotted), intermediate (solid) or high

(dot-dashed) overall mf prevalence. The thick black

lines of the same type show the corresponding model

predictions which were obtained with mbr of 400, 500,

750 and 2000 respectively.
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aggregation in the distribution of the parasites over

humans (some people harbouring many worms

and others few or none); this increases the mating

probabilityofworms, especiallywhenwormnumbers

are low, and leads to higher risk and rates of recrud-

escence after stopping treatment. Differences be-

tween communities in the amount of variability result

in variable elimination prospects (Dadzie et al. 2004).

As previously shown, post-control predictions

depend heavily on assumed coverage and compliance

patterns (Plaisier et al. 2000; Stolk et al. 2003;

Table 2. List of published studies that provide information about both the monthly biting rate and mf

prevalence levels in African communities where Anopheles acts as main vector for lymphatic filariasis

Reference
Mosquito
species Country Location

Average
MBR* Mf diagnosed

Mf
prevalence

(Kuhlow and Zielke, 1978) A.f., A.g. Liberia Bolilo 1514 n.r. 18.3%
(Kuhlow and Zielke, 1978) A.f., A.g. Liberia Gbandu 3038 n.r. 20.0%
(Kuhlow and Zielke, 1978) A.f., A.g. Liberia Kaikatown 510 n.r. 10.3%
(Kuhlow and Zielke, 1978) A.f., A.g. Liberia Grahntown 92 n.r. 12.5%
(Wijers and Kiilu, 1977);
(Wijers and Kinyanjui,
1977)

A.f., A.g. Kenya Jaribuni 898 Counting chamber
(100 mL)

22.0%

(McMahon et al. 1981) A.f., A.g., C.q. Tanzania Tawalani 1071 DEC-provocative test
and counting chamber
(100 mL)

28.3%

(McMahon et al. 1981) A.f., A.g., C.q. Tanzania Machui 491 DEC-provocative test
and counting chamber
(100 mL)

18.5%

(Bushrod, 1979) A.f., A.g. Tanzania Kwale 409 n.r. 17.0%
(Maasch, 1973; Brengues
et al. 1968)

A.f., A.g. Burkina
Faso

Tingrela 711 n.r. 36.0%

(Maasch, 1973) A.f., A.g., A.m. Liberia Bassa Point 825 Blood smear (3r20 mL
finger prick night blood)

34.6%

(Maasch, 1973) A.f., A.g., A.m. Liberia Cowfarm 2393 Blood smear (3r20 mL
finger prick night blood)

36.0%

Abbreviations: A.f.=Anopheles funestus ; A.g.=Anopheles gambiae ; C.q.=Culex quinquefasciatus ; A.m.=Anopheles melas ;
MBR=monthly biting rate; n.r.=not reported.
* The averageMBR is themean biting rate over a period of 1 year, calculated as 1/12 * annual biting rate. The annual biting
rate was estimated from landing catches, which were performed with regular intervals in a period of 12 months.
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Fig. 4. Model-predicted trends in mf prevalence during

and after a 6-year mass treatment programme. Treatment

takes place in the first 6 years of the simulation with the

assumptions of Table 3. The dotted lines and arrowheads

on the top-axis indicate the times of treatment. The thick

lines show the average predicted trends for monthly

biting rates of 500 (solid), 750 (dashed), 1000 (dotted)

and 2000 (dot-dashed). The grey areas around each line

indicate 5th to 95th percentile range of simulation results

at each time. The results are based on 500 simulation

runs. The trends are based on yearly measurements at

t=0, 1, 2, …, 20; fluctuations between these time-points

are not shown.

Table 3. Parameter assumptions about mass

treatment and drug efficacy

Parameter Nominal value

Number of treatment rounds 6
Coverage 80%
Individual compliance to
treatment in subsequent rounds*

‘semi-systematic ’

Fixed proportion of mf
killed by each treatment

100%

Mean proportion of
worms killed by each treatment

50%

Standard deviation of the beta
distribution describing the amount
of random variability in the fraction
of worms killed by treatment#

0.2

* See Appendix 1 for explanation.
# The default assumption is that this variation occurs
randomly between treatments. The sensitivity analysis
considered the alternative assumption that variation occurs
systematically between individuals and that there is no
variation within individuals.
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Michael et al. 2004). This underlines the importance

of assessing their actual values for evaluation of

treatment programmes. The effects of treatment on

adult worms are also very important, and uncertainty

about this affects our ability to predict accurately

post-treatment trends in infection.

Model validation

A strength of our validation approach is the com-

parison of the model predictions to data from a range

of different communities. This helped to identify

both the general pattern and realistic deviations.

Deviations from the model-predicted average re-

lationships can be large. See for example Fig. 3A.

The model predicts a clear transmission threshold in

the biting rate: if the average monthly biting rate

drops below the value of 400, the basic reproduction

ratio (R0) becomes too low and the infection will

die out (R0<1). Such a threshold is theoretically

plausible and our estimate was of the same order

of magnitude as an earlier published estimate

(Michael et al. 2006). However, the threshold pattern

is not clearly visible in the data. Several reasons

may be given as explanations for this. Firstly, the

data are subject to measurement, sampling, or time-

dependent variation. The latter is particularly rel-

evant because trends and fluctuations in biting rates

are not immediately reflected in mf prevalence levels.

Because of these factors, the observations do not lie

on the predicted curve, but can lie anywhere in the

grey-shaded area of Fig. 3A. Secondly, local condi-

tions can differ from the average conditions assumed

in our model (e.g. with respect to variability in ex-

posure, the age-structure of the population or

anthropophagy of the local vector), leading to a dif-

ferent transmission threshold (Basáñez et al. 2002;

Duerr et al. 2005).

The model predictions were only compared with

cross-sectional data from treatment-naı̈ve com-

munities. A next step is to compare model predictions

with longitudinal, post-treatment data. Evaluation

data from the ongoing mass treatment programmes

will be very helpful. Data collected during the first

treatment years may not yet be very powerful for

validation, because the model parameters are not

uniquely identifiable. For example, effective mass

treatment leads to a strong reduction in transmission.

Uncertainty about treatment parameters (coverage,

compliance, drug efficacy) precludes the accurate

quantification of the remaining transmission. The

most informative data for validating the underlying

biological assumptions are probably those that are

collected after cessation of prematurely interrupted

or unsuccessful elimination campaigns: from the

rate of recrudescence after cessation we can learn

much more than from the rate of decline during

mass treatment. Such data are available only for a

few African villages (Meyrowitsch, Simonsen and

Magesa, 2004a, b). It would be interesting to test the

Mf prevalence at t=0
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Fig. 5. Sensitivity analysis: impact of changes in parameter values and other model assumptions on the predicted mf

prevalence before and after an intervention with 6 yearly rounds of mass treatment. Post-treatment mf prevalence was

measured in year 20, i.e. 15 years after the 6th (last) treatment round. The vertical black lines in each graph show the

mf prevalence levels that were predicted by the model with nominal parameter values (Table 1). Markers show the

results obtained under alternative assumptions. On the left side of the graph we provide descriptive labels for the

parameters or assumptions concerned. On the right side of the graph we specify the alternative value for the parameters

concerned, with the 1st value corresponding to the black bullet and the 2nd value (if available) to the white bullet. See

Materials and Methods for considerations in choosing alternative values.
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model against these data, but more data are needed to

understand the general trends and possible devi-

ations depending on local factors. Since the GPELF

strives to achieve success in elimination programmes,

such data will probably remain scarce for some time.

Uncertainty

One of the uncertain aspects in models for LF

transmission is the role of acquired immunity.

While strong acquired immunity was included in the

Pondicherry model (Subramanian et al. 2004), we

found that evidence from the African continent is not

consistent with this type of immunity as a strong

regulatory factor of parasite population abundance

(Stolk et al. 2004). The difference between the

Pondicherry and Africa model is somewhat unsatis-

factory: it is rather unlikely that this mechanism

plays a role in one region, but not in another. The

new challenge is to define whether a model without

acquired immunity can explain the observed patterns

from Pondicherry if we take account of specific local

conditions. In our earlier paper we discussed possible

explanations (Stolk et al. 2004).

The discussion about acquired immunity points at

a more general problem in modelling LF trans-

mission, i.e. our incomplete understanding of the

transmission dynamics, the nature and magnitude of

regulatory processes, and the effects of treatment.

For example, we rejected the hypothesis that strong

acquired immunity leads to a lower mf prevalence

in elderly individuals, but we cannot exclude the

operation of other regulatory immune processes

(Woolhouse, 1992). Similarly, we lack knowledge

about other factors that could influence the predic-

tions, such as the occurrence of density dependence

in the various processes of the parasite’s life cycle

(Duerr et al. 2005; Churcher, Filipe and Basáñez,

2006), or the possibility that parasites become re-

sistant against the antifilarial drugs (McCarthy,

2005; Schwab et al. 2005, 2007). We can also ques-

tion the assumption that biological parameters such

as the lifespan of adult worms and mf do not vary

between locations. In the absence of evidence about

these factors or data to validate assumptions, we kept

the model parsimonious, trusting that the model

captures the critical processes. Yet, this underlines

the need to validate the model against longitudinal,

post-treatment data, when they become available.

Application of the model

Themodel can be a useful tool for decision support in

LF elimination programmes in the African region.

For example, the model can help to determine the

coverage and number of treatment rounds required

for LF elimination under the different circumstances

that occur in the African region using earlier pub-

lished methods (Winnen et al. 2002; Stolk et al.

2003). Further, detailed analysis of predicted trends

after cessation of mass treatment can elucidate how

the probability of achieving elimination depends

on outcomes of epidemiological surveys in the end

phase of treatment programmes and early years of

follow-up. This will help to determine criteria for the

cessation of mass treatment and to design surveil-

lance schemes to monitor for possible recrudescence.

Clearly, all predictions need to be accompanied by

critical assessment of uncertainty. Making this un-

certainty explicit can contribute to better and pru-

dent decision-making.

Conclusion

In conclusion, we have developed a genericmodel for

LF transmission by Anopheles mosquitoes in Africa,

which captures the most important factors of LF

dynamics and can easily be adjusted to specific cir-

cumstances by changing assumptions about expo-

sure to mosquito bites. Its predictions are consistent

with cross-sectional parasitological and entomologi-

cal data. Although further validation against longi-

tudinal, post-treatment data is required, the model

already provides an important tool for decision-

making in LF elimination programmes. The model

can help to assess when ongoing elimination activities

in African populations can be stopped and to

design surveillance schemes. In view of the rapid

expansion of the Global Programme to Eliminate

Lymphatic Filariasis, these issues need to be ad-

dressed urgently.
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APPENDIX 1. THE LYMFASIM SIMULATION

MODEL

Simulation technique

LYMFASIM is based on the technique of stochastic

microsimulation (Habbema et al. 1996). This tech-

nique is characterized by the simulation of individual

life histories of fictitious persons, who in aggregate

constitute the population of interest. The computer

program tracks expected changes over time in the

population composition and the relevant character-

istics of each individual.

Model structure

Themodel simulates the demographic processes that

drive population changes. Births and deaths are

modelled as stochastic events in the life course of

individuals. The expected number of newborns per

time step depends on the number of females per age

group and age-specific fertility rates. Random num-

bers define the realized number of newborns entering

the population per time step. The age of death varies

between individuals; it is defined as soon as a person

enters the population by drawing a random variate

from a life table. Immigration and emigration are not

considered in the LYMFASIM model.

Each simulated individual has a number of

characteristics, which define personal risk factors

and behaviours that are relevant for transmission

and control. Some of these characteristics are fixed,

such as gender, attractiveness to mosquitoes, or

willingness to comply with treatment. They are

determined by randomly drawing a value from pre-

specified probability distributions. Other character-

istics can change during the course of a simulation,

such as the age-dependent fertility rates and

exposure to mosquitoes. Because of their personal

characteristics, individuals may be predisposed to

heavy or light infections. The infection status is the

most important characteristic of human individuals.

LYMFASIM simulates the transmission of parasites

from person to person and tracks changes in the

number of worms per individual.

A schematic representation of the variables and

processes involved in transmission is provided in

Fig. 1. Because LYMFASIM uses one-month time

steps, all rates are expressed permonth. Themonthly

transmission potential (mtpi) reflects the number of

L3 larvae that are released to a person per month. On

average, only a small proportion (called the success

ratio, sr) of the released larvae will survive to develop

further into adult worms; a chance process defines

how many L3 larvae survive per month. The life

course of surviving worms is simulated at individual

worm level. Worms are immature during a period Ti

and their average lifespan is Tl. The lifespan varies

between worms according to a Weibull distribution

with shape parameter aTl. We assume that all adult

females are inseminated and produce microfilariae

(mf), if at least one male worm is present in the

human body. Parameter r0 gives the mf production

per female worm, expressed as the number of mf per

month and per 20 mL of peripheral blood. Mf have a

mean lifespan Tmf and their monthly survival is

given by 1x1/Tmf. Mf are not simulated at the

individual level ; the model merely calculates the

average mf density in the blood per individual (ex-

pressed in mf per 20 mL night finger prick blood).

LYMFASIM has the option to include acquired

immunity, which either reduces the probability of

L3 larvae to develop into adult worm or reduces

the mf output by female adult worms. Both me-

chanisms result in a lower mf count in elderly com-

pared to young adults. As explained in the main text,

acquired immunity is not included in the current

model.

The ‘uptake curve’ (in this case given by a math-

ematical function with parameters a, b, and c) de-

scribes the deterministic relation between the mf

density in the human blood of person i and the

average number of L3 larvae that develop in a mos-

quito after feeding on that person (L3i). The average

number of L3 larvae taken up by mosquitoes is given

by the weighted average of the uptake from all in-

dividuals, the weights reflecting the relative exposure

of each individual to mosquito bites (Ei, see below).

This average number is multiplied by a factor v to

calculate the average number of L3 larvae that is

released per bite, L3. The factor v accounts for the

proportion of L3 that is lost due to mosquito death

and the proportion of L3 that does not leave the

mosquito when it bites.

The relative exposure of an individual (Ei) in-

dicates how many mosquito bites a person gets per

month. It is expressed as a fraction of the average

number ofmosquito bites received per adult male per

month (monthly biting rate, mbr). LYMFASIM
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accounts for age (and optional sex) variation in ex-

posure and random variation in individuals’ attract-

iveness for mosquitoes. Here we adopt the common

assumption that exposure increases with body

surface during growth in childhood and stabilizes in

adults (Duerr et al. 2005; Smith et al. 2006). We

approximate this by a linear increase in relative

exposure from E0 at birth to the adult (maximum)

level that is achieved at age amax. The random, not

age-related variability in exposure is described by

a gamma distribution with shape parameter aE

and mean 1. An individual’s relative exposure

does not only determine his/her contribution to

the mean L3-load of mosquitoes, but also the num-

ber of L3-larvae received: the monthly transmission

potential (mtpi) is calculated as the mean number of

L3 larvae released per mosquito bite (L3, see above)

multiplied by the mbr and the individual’s relative

exposure (Ei). We assume that the mbr is constant

over time, ignoring seasonal variation and other time

trends.

Control strategies

To simulate the impact of mass drug administration,

the user must specify the exact moments of treatment

(year, month), the drug or administration regimen

applied with its efficacy, the fraction of people treated

per round (coverage), and the compliance pattern.

The three main effects of treatment are: (1) a

fraction of adult worms is killed; (2) a fraction of

female adult worms is permanently sterilized (i.e.

they stop producing mf); and (3) a fraction of mf

is killed. The fraction of parasites affected can be

constant or can vary according to a chosen prob-

ability distribution function. In addition, for each

of the three mechanisms, the user may specify a

fraction of treated patients with no or full effect of

treatment (i.e. the fraction of parasites affected is

respectively 0 or 1). All stochastic variables related

to the effects of treatment are by default assumed

to be independent and to be generated for each

person at each treatment. As an alternative, the

treatment efficacy can be attributed as a fixed

characteristic to an individual, who in that case al-

ways responds in the same way to treatment.

Temporal reductions in the mf production can also

be simulated (Plaisier et al. 1998), but these are not

included here.

The compliance pattern describes the tendency

of persons to participate in repeated treatment

rounds. In case of random compliance, all individuals

have the same probability to be treated (equal to

the fraction covered). In case of systematic com-

pliance, each person in the population is character-

ized by an invariable compliance factor (a random

number between 0 and 1), which results in a treat-

ment probability of either 1 (for compliance

factorfcoverage) or 0 (for compliance factor>

coverage). Consequently, if coverage is constant

over time, some individuals will always be treated

while the remaining persons are never treated. In the

case of semi-systematic compliance pattern, the com-

pliance factor indicates a person’s tendency to par-

ticipate. Random numbers define whether an

individual is actually treated or not. The latter

pattern is presumably most realistic (Plaisier et al.

2000).

LYMFASIM also allows the simulation of

selective treatment. In that case, treatment is only

provided to those persons who were Mf positive in

the most recent survey (which may take place in

the same month as treatment, see below). Coverage

and compliance play no role. Vector control can be

modelled as a percentage reduction of the monthly

biting rate during a specified period. The number of

such periods, their duration and the reduction in

monthly biting rate can be chosen.

Model output

At chosen times surveys can be simulated to deter-

mine the mf counts for all individuals in the popu-

lation. We assume that this is done by microscopic

examination of a 20 mL night blood smear. The

counts are variable and are assumed to follow a

negative binomial distribution with clumping factor

k and the simulated mf density as mean expected

outcome. The results can be summarized by different

population-level indicators of infection: the mf

prevalence, the geometric or arithmetic mean num-

ber of mf per smear, or the frequency distribution

of mf counts in the population. Survey results can be

tabulated by age group and gender.

Running the model

The program starts by creating an initial population,

with specified size and age distribution. At the start

of the simulation, some people are infected via some

external force of infection. The model simulates how

the population develops and how the infection level

and other individual characteristics change in each

one-month time step. To reach an endemic equilib-

rium situation and a stable age structure of the

population, a simulation must generally cover a

period of many decades. This is called a ‘burn-in’

period. Since the characteristics of persons are de-

termined by chance or change as a result of stochastic

processes, the result of one simulation run represents

only one of many possible outcomes. Repeated runs

will give slightly different results. The variability

between runs reflects natural variation in real world

populations, conditional on the appropriateness of

the model structure. Simulations always have to be

repeated to estimate the mean outcome and gain an

insight into variability.
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APPENDIX 2. QUANTIFYING THE UPTAKE CURVE

FOR ANOPHELES

Methods

The uptake curve describes the relationship between

mf density in the human blood and the number of

L3 larvae developing in mosquitoes after feeding. To

quantify this curve for Anopheles, we analyzed data

about the average number of L3 larvae developing in

a batch of mosquitoes that fed on an infected human

with known mf density. Raw data were available

from a field study in Ghana (Boakye et al. 2004).

The few available data from published feeding

experiments were also used (Bryan and Southgate,

1988a, b ; Southgate and Bryan, 1992). Summary

information of the different studies is provided in

Table 4.

To enable combined analysis of the data from dif-

ferent studies, we first standardized the mf counts to

the expected count in a 20 mL finger prick blood

smear. When reported mf counts were based on

f100 mL finger prick blood, we only applied a cor-

rection for volume. To transform mf count in 1 mL

venous blood to corresponding count in 20 ml finger
prick blood, we used the relationship thatwas derived

bySnowandMichael (2002) :y=0.037x+0.1449x2x
0.0309, where: y=log10 (Mf count in 20 mL
blood+1), x=log10 (Mf count in 1 ml blood+1).

Subsequently, we quantified the relationship

between the standardized mf count in the human

blood (mf per 20 mL) and the mean number of L3

developing in mosquitoes after feeding, by fitting

equation 1 to the data.

L3=a(1x exp (x(bM)c) (1)

with L3=the average number of L3 larvae de-

veloping in mosquitoes; M=the mf density in

human blood as counted in a 20 mL night blood

smear; a=the maximum number of L3 larvae that

can develop in mosquitoes ; b=1/scale ; c=power-

parameter. Depending on the value of the parameter

c, this curve takes a saturating (c<1) or sigmoid form

(c>1). The latter is suitable for describing ‘facili-

tation’ in the mf uptake and development, which is

assumed forAnopheles : the number of L3 developing

in mosquitoes initially increases more than pro-

portional with the mf density in the human blood,

but at higher densities limiting mechanisms get the

upper hand so that saturation occurs (Southgate and

Bryan, 1992; Duerr et al. 2005).

Using the non-linear regression procedure (PROC

NLIN) in SAS (v8.2), we estimated the values of

parameters a, b and c with the least squares method.

Observations were weighed for the number of

mosquitoes examined. The weights (Wi) were cal-

culated as:

Wi=
ffiffiffiffi
xi

p
,Xn

i

ffiffiffiffi
xi

p
(2)

with xi the number of mosquitoes examined for

observation i, and n the total number of observations

included in the analysis. To prevent exclusion of

observations with zero mf counts, we replaced the

zeros by half the detection limit (with the detection

limit being calculated as 1/(total blood volume ex-

amined in mL)*20 mL).

Likelihood-based confidence intervals were cal-

culated for parameter c (Kalbfleish, 1979). Confi-

dence boundaries for this parameter were derived

Table 4. Summary information about the data used for quantifying the vector uptake curve for

Anopheles mosquitoes

Methods used for
measuring mf intensity

Reported mf
intensity in
mf/mL (range)

No. of
batches of
mosquitoes
examined

Mosquito
species

Mean no. of
mosquitoes
dissected per
batch (range)

Mean no. of
L3 recovered
from mosquitoes
in a batch (range)

(Boakye et al. 2004)
Mean mf count in 9r100 mL samples of
finger prick blood, counting chamber

2630 (0 – 9740) 20 A.f., A.g. 15.9 (1–34) 1.23 (0–3.31)

(Southgate and Bryan, 1992)
Mf count in a 1r100 mL sample of
finger prick blood, counting chamber

1490 (1300–1735) 3 A.g. 39.7 (NA) 0.52 (0.28–0.87)
1434 (1190–1677) 3 A.a. 25.3 (NA) 1.48 (1.11–1.67)
1408 (920–1657) 3 A.mr. 87.7 (NA) 1.16 (0.79–1.56)
1367 (930–1735) 3 A.f. 38.7 (NA) 0.67 (0.24–1.13)

(Bryan and Southgate, 1988a, b)
Mf count in 1r1 mL venous blood
sample, membrane filtration;
sometimes: mf count in 20 mL
finger prick blood

312 (0–11400) 20 A.g. 182.9 (80–276) 0.16 (0–0.7)
286 (0–11400) 18 A.a. 159.7 (35–294) 0.15 (0–0.81)
435 (0–11400) 11 A.ml. 31.5 (1–110) 0.32 (0–1.37)

Abbreviations: A.f.=Anopheles funestus ; A.g.=Anopheles gambiae ; A.a.=Anopheles arabiensis ; A.mr.=Anopheles merus ;
A.ml.=Anopheles melas ; mf=microfilariae.
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iteratively, by searching for the highest and lowest

possible value that did not give a significantly worse

fit to the data as assessed via the sum of squared

errors (SSE). The maximum acceptable SSE (cor-

responding to the boundaries of the 95% confidence

interval for parameter c) is given by SSEopt+3.84*
scale, with the scale calculated as the sum of squared

errors of the optimized model divided by the corre-

sponding degrees of freedom (SSEopt/d.f.).

Results

The observations and estimated curves are shown

in Fig. 6. There were 81 observations in total. The

number of mosquitoes on which observations

were based varied widely, from 1 to 294. Point esti-

mates of the parameters of equation 1 were: a=1.67,

b=0.027, and c=1.51. The solid line in Fig. 6

shows the shape of the uptake curve. The value of

c>1 gives the curve a sigmoid shape, indicating that

there is facilitation in the relationship between mf

density in the human blood and the L3 yield per mf.

However, the data used for estimation were highly

variable and some uncertainty remains about the

strength of density dependence. The dotted and da-

shed lines correspond to the upper and lower

boundaries of the 95% confidence interval for the

parameter c, respectively resulting in curves with

weaker facilitation (a=2.11, b=0.013, c=0.81) or

stronger facilitation (a=1.40, b=0.036, c=2.72).

Note that the dotted curve in fact shows limitation:

the L3 yield per mf is highest at the lowest mf

density and continuously declines with increasing mf

density.
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Fig. 6. Uptake curve, showing the relation between the mf count in human blood (mf per 20 mL of blood) and the

average number of L3 developing per mosquito after a blood meal. Observations are shown as open circles and

the circle size correlates to the number of mosquitoes examined. The solid line shows the best fitting curve;

the dotted and dashed lines respectively give the curves that correspond to the lower and upper boundary for

parameter c (the severity of density dependence).
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