1,540 research outputs found

    Computing New Optimized Routes for GPS Navigators Using Evolutionary Algorithms

    Get PDF
    GPS navigators are now present in most vehicles and smartphones. The usual goal of these navigators is to take the user in less time or distance to a destination. However, the global use of navigators in a given city could lead to traffic jams as they have a highly biased preference for some streets. From a general point of view, spreading the traffic throughout the city could be a way of preventing jams and making a better use of public resources. We propose a way of calculating alternative routes to be assigned by these devices in order to foster a better use of the streets. Our experimentation involves maps from OpenStreetMap, real road traffic, and the microsimulator SUMO. We contribute to reducing travel times, greenhouse gas emissions, and fuel consumption. To analyze the sociological aspect of any innovation, we analyze the penetration (acceptance) rate which shows that our proposal is competitive even when just 10% of the drivers are using it.Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es). FPU grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports. University of Malaga. International Campus of Excellence Andalucia TECH

    Red Swarm: Smart Mobility in Cities with EAs

    Get PDF
    This work presents an original approach to regulate traffic by using an on-line system controlled by an EA. Our proposal uses computational spots with WiFi connectivity located at traffic lights (the Red Swarm), which are used to suggest alternative individual routes to vehicles. An evolutionary algorithm is also proposed in order to find a configuration for the Red Swarm spots which reduces the travel time of the vehicles and also prevents traffic jams. We solve real scenarios in the city of Malaga (Spain), thus enriching the OpenStreetMap info by adding traffic lights, sensors, routes and vehicle flows. The result is then imported into the SUMO traffic simulator to be used as a method for calculating the fitness of solutions. Our results are competitive compared to the common solutions from experts in terms of travel and stop time, and also with respect to other similar proposals but with the added value of solving a real, big instance.Ministerio de Economía y Competitividad y FEDER (TIN2011-28194

    Integrated Quality Control of Precision Assemblies using Computed Tomography

    Get PDF

    Refracted Truths: Mediating Constructions of Identity through the Illness and Healing Experience of Homeless Native American Men along the Wasatch Front, Utah.

    Get PDF
    The thesis investigates how homeless Native American men in Salt Lake City, Utah navigate their experience of homelessness, as well as the social suffering it gives rise to, in order to affirm a sense of personhood and personal identity. It examines how this experience is constructed, presented, and mediated through a series of ambivalent spatial and agentic practices that contribute to shaping a contemporary and localized expression of Native American masculine identity. The thesis argues that, for Native Americans, the notions of personhood and identity are deeply rooted in a culturally and spiritually embodied sense of place. When this bond with place is ruptured, it not only complicates our understanding of indigenous homelessness, but the possibility for homeless Native American individuals of living fulfilling lives is fundamentally compromised and can lead to severe and debilitating forms of suffering that are difficult for us to comprehend. Their experience of homelessness also underlines the difficulties many of these individuals encounter in trying to reclaim a meaningful sense of self in order to lead ‘good’ lives. Unfortunately, it also reminds us in many cases of their failure to do so. The thesis presents these themes as multiple representations and suggests that Native American homelessness constitutes a neglected narrative within the Native American identity and healthcare discourse. It also includes an investigation of the efforts to address this complex and problematic reality on the part of the independent agencies that work with homelessness in Salt Lake City and considers possible implications for future research, practice, and advocacy

    Separation-Sensitive Collision Detection for Convex Objects

    Full text link
    We develop a class of new kinetic data structures for collision detection between moving convex polytopes; the performance of these structures is sensitive to the separation of the polytopes during their motion. For two convex polygons in the plane, let DD be the maximum diameter of the polygons, and let ss be the minimum distance between them during their motion. Our separation certificate changes O(log(D/s))O(\log(D/s)) times when the relative motion of the two polygons is a translation along a straight line or convex curve, O(D/s)O(\sqrt{D/s}) for translation along an algebraic trajectory, and O(D/s)O(D/s) for algebraic rigid motion (translation and rotation). Each certificate update is performed in O(log(D/s))O(\log(D/s)) time. Variants of these data structures are also shown that exhibit \emph{hysteresis}---after a separation certificate fails, the new certificate cannot fail again until the objects have moved by some constant fraction of their current separation. We can then bound the number of events by the combinatorial size of a certain cover of the motion path by balls.Comment: 10 pages, 8 figures; to appear in Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999; see also http://www.uiuc.edu/ph/www/jeffe/pubs/kollide.html ; v2 replaces submission with camera-ready versio

    Why Illinois Should Abandon \u3cem\u3eFrye\u3c/em\u3e\u27s General Acceptance Standard for the Admission of Novel Scientific Evidence

    Get PDF
    This Note examines the standard for the admission of novel scientific evidence at trial in Illinois. After tracing the nationwide emergence, dominance, and current departure from Frye v. United State\u27s general acceptance standard, the Note focuses on the inherent problems and ambiguities involved in Frye\u27s application, and the problematic results that arise from using Frye. The future of Frye\u27s use in Illinois is examined in light of the conflict between Frye and the United States Supreme Court\u27s decision in Daubert v. Merrell Dow Pharmaceutical, Inc. Stolfi concludes that Frye has outlived its usefulness in our high-speed, technologically advanced nation and that only through adoption of a Federal Rule of Evidence 702 or Daubert-based approach will Illinois ensure that the jury\u27s fact-finding role is protected

    Dynamics and control of robotic systems for on-orbit objects manipulation

    Get PDF
    Multi-body systems (MSs) are assemblies composed of multiple bodies (either rigid or structurally flexible) connected among each other by means of mechanical joints. In many engineering fields (such as aerospace, aeronautics, robotics, machinery, military weapons and bio-mechanics) a large number of systems (e.g. space robots, aircraft, terrestrial vehicles, industrial machinery, launching systems) can be included in this category. The dynamic characteristics and performance of such complex systems need to be accurately and rapidly analyzed and predicted. Taking this engineering background into consideration, a new branch of study, named as Multi-body Systems Dynamics (MSD), emerged in the 1960s and has become an important research and development area in modern mechanics; it mainly addresses the theoretical modeling, numerical analysis, design optimization and control for complex MSs. The research on dynamics modeling and numerical solving techniques for rigid multi-body systems has relatively matured and perfected through the developments over the past half century. However, for many engineering problems, the rigid multi-body system model cannot meet the requirements in terms of precision. It is then necessary to consider the coupling between the large rigid motions of the MS components and their elastic displacements; thus the study of the dynamics of flexible MSs has gained increasing relevance. The flexible MSD involves many theories and methods, such as continuum mechanics, computational mechanics and nonlinear dynamics, thus implying a higher requirement on the theoretical basis. Robotic on-orbit operations for servicing, repairing or de-orbiting existing satellites are among space mission concepts expected to have a relevant role in a close future. In particular, many studies have been focused on removing significant debris objects from their orbit. While mission designs involving tethers, nets, harpoons or glues are among options studied and analyzed by the scientific and industrial community, the debris removal by means of robotic manipulators seems to be the solution with the longest space experience. In fact, robotic manipulators are now a well-established technology in space applications as they are routinely used for handling and assembling large space modules and for reducing human extravehicular activities on the International Space Station. The operations are generally performed in a tele-operated approach, where the slow motion of the robotic manipulator is controlled by specialized operators on board of the space station or at the ground control center. Grasped objects are usually cooperative, meaning they are capable to re-orient themselves or have appropriate mechanisms for engagement with the end-effectors of the manipulator (i.e. its terminal parts). On the other hand, debris removal missions would target objects which are often non-controlled and lacking specific hooking points. Moreover, there would be a distinctive advantage in terms of cost and reliability to conduct this type of mission profile in a fully autonomous manner, as issues like obstacle avoidance could be more easily managed locally than from a far away control center. Space Manipulator Systems (SMSs) are satellites made of a base platform equipped with one or more robotic arms. A SMS is a floating system because its base is not fixed to the ground like in terrestrial manipulators; therefore, the motion of the robotic arms affects the attitude and position of the base platform and vice versa. This reciprocal influence is denoted as "dynamic coupling" and makes the dynamics modeling and motion planning of a space robot much more complicated than those of fixed-base manipulators. Indeed, SMSs are complex systems whose dynamics modeling requires appropriate theoretical and mathematical tools. The growing importance SMSs are acquiring is due to their operational ductility as they are able to perform complicated tasks such as repairing, refueling, re-orbiting spacecraft, assembling articulated space structures and cleaning up the increasing amount of space debris. SMSs have also been employed in several rendezvous and docking missions. They have also been the object of many studies which verified the possibility to extend the operational life of commercial and scientific satellites by using an automated servicing spacecraft dedicated to repair, refuel and/or manage their failures (e.g. DARPA's Orbital Express and JAXA's ETS VII). Furthermore, Active Debris Removal (ADR) via robotic systems is one of the main concerns governments and space agencies have been facing in the last years. As a result, the grasping and post-grasping operations on non-cooperative objects are still open research areas facing many technical challenges: the target object identification by means of passive or active optical techniques, the estimation of its kinematic state, the design of dexterous robotic manipulators and end-effectors, the multi-body dynamics analysis, the selection of approaching and grasping maneuvers and the post-grasping mission planning are the main open research challenges in this field. The missions involving the use of SMSs are usually characterized by the following typical phases: 1. Orbital approach; 2. Rendez-vous; 3. Robotic arm(s) deployment; 4. Pre-grasping; 5. Grasping and post-grasping operations. This thesis project will focus on the last three. The manuscript is structured as follows: Chapter 1 presents the derivation of a multi-body system dynamics equations further developing them to reach their Kane's formulation; Chapter 2 investigates two different approaches (Particle Swarm Optimization and Machine Learning) dealing with a space manipulator deployment maneuver; Chapter 3 addresses the design of a combined Impedance+PD controller capable of accomplishing the pre-grasping phase goals and Chapter 4 is dedicated to the dynamic modeling of the closed-loop kinematic chain formed by the manipulator and the grasped target object and to the synthesis of a Jacobian Transpose+PD controller for a post-grasping docking maneuver. Finally, the concluding remarks summarize the overall thesis contribution
    corecore