176 research outputs found
Many-body quantum dynamics of polarisation squeezing in optical fibre
We report new experiments that test quantum dynamical predictions of
polarization squeezing for ultrashort photonic pulses in a birefringent fibre,
including all relevant dissipative effects. This exponentially complex
many-body problem is solved by means of a stochastic phase-space method. The
squeezing is calculated and compared to experimental data, resulting in
excellent quantitative agreement. From the simulations, we identify the
physical limits to quantum noise reduction in optical fibres. The research
represents a significant experimental test of first-principles time-domain
quantum dynamics in a one-dimensional interacting Bose gas coupled to
dissipative reservoirs.Comment: 4 pages, 4 figure
Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects
PublishedResearch Support, Non-U.S. Gov'tBACKGROUND: Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. OBJECTIVES: We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). METHODS: Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17 alpha-ethinyl-estradiol (EE2)], and to EE2 alone. RESULTS: In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. CONCLUSION: These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures.This work was funded by the Environment Agency to C.R.T. (project no. SC040078). T.N. was supported by a Fundação para a Ciência ea Tecnologia (FCT) fellowship (BPD/18192/04)
Specific heat and magnetization study on single crystals of a frustrated, quasi one-dimensional oxide: Ca3Co2O6
Specific heat and magnetization measurements have been carried out under a
range of magnetic fields on single crystals of Ca3Co2O6. This compound is
composed of Ising magnetic chains that are arranged on a triangular lattice.
The intrachain and interchain couplings are ferromagnetic and
antiferromagnetic, respectively. This situation gives rise to geometrical
frustration, that bears some similarity to the classical problem of a
two-dimensional Ising triangular antiferromagnet. This paper reports on the
ordering process at low-T and the possibility of one-dimensional features at
high-T.Comment: 7 pages, 6 figures, accepted for publication in PR
Quantum many-body simulations using Gaussian phase-space representations
Phase-space representations are of increasing importance as a viable and
successful means to study exponentially complex quantum many-body systems from
first principles. This review traces the background of these methods, starting
from the early work of Wigner, Glauber and Sudarshan. We focus on modern
phase-space approaches using non-classical phase-space representations. These
lead to the Gaussian representation, which unifies bosonic and fermionic
phase-space. Examples treated include quantum solitons in optical fibers,
colliding Bose-Einstein condensates, and strongly correlated fermions on
lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more
reference
Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion
The predictions of the nonlinear Schrodinger equation have been tested by passing 5.5-psec optical pulses through a 70-m single-mode optical fiber. With use of a precise cross correlation technique based on pulse compression, dramatic reshaping of the input pulses into flat-topped, frequency-broadened, and positively chirped 20-psec output pulses with self-steepened fall times of less than 2 psec was observed. The observations are in good agreement with theory.Peer reviewedElectrical and Computer Engineerin
Suppression and Enhancement of Soliton Switching During Interaction in Periodically Twisted Birefringent Fiber
Soliton interaction in periodically twisted birefringent optical fibers has
been analysed analytically with refernce to soliton switching. For this purpose
we construct the exact general two-soliton solution of the associated coupled
system and investigate its asymptotic behaviour. Using the results of our
analytical approach we point out that the interaction can be used as a switch
to suppress or to enhance soliton switching dynamics, if one injects
multi-soliton as an input pulse in the periodically twisted birefringent fiber.Comment: 10 pages, 4 figures, Latex, submitted to Phys. Rev.
- …