22 research outputs found

    Preimplantation Genetic Testing for Monogenic Kidney Disease

    Get PDF
    BACKGROUND AND OBJECTIVES: A genetic cause can be identified for an increasing number of pediatric and adult-onset kidney diseases. Preimplantation genetic testing (formerly known as preimplantation genetic diagnostics) is a reproductive technology that helps prospective parents to prevent passing on (a) disease-causing mutation(s) to their offspring. Here, we provide a clinical overview of 25 years of preimplantation genetic testing for monogenic kidney disease in The Netherlands. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This is a retrospective cohort study of couples counseled on preimplantation genetic testing for monogenic kidney disease in the national preimplantation genetic testing expert center (Maastricht University Medical Center+) from January 1995 to June 2019. Statistical analysis was performed through chi-squared tests. RESULTS: In total, 98 couples were counseled regarding preimplantation genetic testing, of whom 53% opted for preimplantation genetic testing. The most frequent indications for referral were autosomal dominant polycystic kidney disease (38%), Alport syndrome (26%), and autosomal recessive polycystic kidney disease (9%). Of couples with at least one preimplantation genetic testing cycle with oocyte retrieval, 65% experienced one or more live births of an unaffected child. Of couples counseled, 38% declined preimplantation genetic testing for various personal and technical reasons. CONCLUSIONS: Referrals, including for adult-onset disease, have increased steadily over the past decade. Though some couples decline preimplantation genetic testing, in the couples who proceed with at least one preimplantation genetic testing cycle, almost two thirds experienced at least one live birth rate

    Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies

    Get PDF
    Nephronophthisis is one of the leading genetic causes of end-stage renal disease in childhood. Early diagnostics and prognostics for nephronophthisis are currently limited. We aimed to identify non-invasive protein biomarkers for nephronophthisis in urinary extracellular vesicles. Extracellular vesicles were isolated from urine of 12 patients with a nephronophthisis-related ciliopathy and 12 age- and gender-matched controls, followed by in-depth label-free LC-MS/MS proteomics analysis of gel fractionated extracellular vesicle proteins. Supervised cluster analysis of proteomic profiles separated patients from controls. We identified 156 differentially expressed proteins with fold change ≥4 in patients compared to controls (P <.05). Importantly, expression levels of discriminating proteins were correlated with chronic kidney disease stage, suggesting possible applications for urinary extracellular vesicle biomarkers in prognostics for nephronophthisis. Enrichment analysis of gene ontology terms revealed GO terms including signaling, actin cytoskeleton and endocytosis among the downregulated proteins in patients, whereas terms related to response to wounding and extracellular matrix organization were enriched among upregulated proteins. Our findings represent the first step towards a non-invasive diagnostic test for nephronophthisis. Further research is needed to determine specificity of the candidate biomarkers. In conclusion, proteomic profiles of urinary extracellular vesicles differentiate nephronophthisis-related ciliopathy patients from healthy controls. Significance: Nephronophthisis is an important cause of end-stage renal disease in children and is associated with an average diagnostic delay of 3.5 years. This is the first study investigating candidate biomarkers for nephronophthisis using global proteomics analysis of urinary extracellular vesicles in patients with nephronophthisis compared to control individuals. We show that measuring protein markers in urinary extracellular vesicles is a promising approach for non-invasive early diagnostics of nephronophthisis

    Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies

    No full text
    Nephronophthisis is one of the leading genetic causes of end-stage renal disease in childhood. Early diagnostics and prognostics for nephronophthisis are currently limited. We aimed to identify non-invasive protein biomarkers for nephronophthisis in urinary extracellular vesicles. Extracellular vesicles were isolated from urine of 12 patients with a nephronophthisis-related ciliopathy and 12 age- and gender-matched controls, followed by in-depth label-free LC-MS/MS proteomics analysis of gel fractionated extracellular vesicle proteins. Supervised cluster analysis of proteomic profiles separated patients from controls. We identified 156 differentially expressed proteins with fold change ≥4 in patients compared to controls (P <.05). Importantly, expression levels of discriminating proteins were correlated with chronic kidney disease stage, suggesting possible applications for urinary extracellular vesicle biomarkers in prognostics for nephronophthisis. Enrichment analysis of gene ontology terms revealed GO terms including signaling, actin cytoskeleton and endocytosis among the downregulated proteins in patients, whereas terms related to response to wounding and extracellular matrix organization were enriched among upregulated proteins. Our findings represent the first step towards a non-invasive diagnostic test for nephronophthisis. Further research is needed to determine specificity of the candidate biomarkers. In conclusion, proteomic profiles of urinary extracellular vesicles differentiate nephronophthisis-related ciliopathy patients from healthy controls. Significance: Nephronophthisis is an important cause of end-stage renal disease in children and is associated with an average diagnostic delay of 3.5 years. This is the first study investigating candidate biomarkers for nephronophthisis using global proteomics analysis of urinary extracellular vesicles in patients with nephronophthisis compared to control individuals. We show that measuring protein markers in urinary extracellular vesicles is a promising approach for non-invasive early diagnostics of nephronophthisis

    De novo 14q24.2q24.3 microdeletion including IFT43 is associated with intellectual disability, skeletal anomalies, cardiac anomalies, and myopia

    No full text
    We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc

    Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome)

    No full text
    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.European Journal of Human Genetics advance online publication, 17 August 2016; doi:10.1038/ejhg.2016.103

    Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome)

    No full text
    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD

    Non-invasive sources of cells with primary cilia from pediatric and adult patients

    Get PDF
    BACKGROUND: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home environment. FINDINGS: We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach, we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed. Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence. Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug testing. CONCLUSIONS: As evidence continues to accumulate showing that the primary cilium has a central role in development and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo study of ciliopathies and in the future, for personalized medicine

    Non-invasive sources of cells with primary cilia from pediatric and adult patients

    Get PDF
    BACKGROUND: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home environment. FINDINGS: We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach, we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed. Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence. Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug testing. CONCLUSIONS: As evidence continues to accumulate showing that the primary cilium has a central role in development and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo study of ciliopathies and in the future, for personalized medicine

    Non-invasive sources of cells with primary cilia from pediatric and adult patients

    No full text
    Abstract Background Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home environment. Findings We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach, we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed. Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence. Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug testing. Conclusions As evidence continues to accumulate showing that the primary cilium has a central role in development and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo study of ciliopathies and in the future, for personalized medicine
    corecore