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Abstract

Background: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient
material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly
pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents)
may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive
methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home
environment.

Findings: We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach,
we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after
approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children
or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed.
Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence.
Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug
testing.

Conclusions: As evidence continues to accumulate showing that the primary cilium has a central role in development
and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the
non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo
study of ciliopathies and in the future, for personalized medicine.

Keywords: Pediatrics, Urine, Deciduous tooth, Cell culture, Protocol, Cilia, Ciliopathy
Findings
Primary cells and ciliopathies
When cilia formation or function is perturbed, any of sev-
eral dozen associated diseases, collectively known as cilio-
pathies, can occur. While each ciliopathy disease entity is
individually rare, collectively they are common (1 in 300–
400 individuals) (1). These genetically heterogeneous
diseases can involve one or more organ features, ran-
ging from mild to perinatal lethal phenotypes. Given
the wide-ranging function attributed to cilia, it is not
surprising that defects in these organelles give rise to a
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multitude of organ-specific functional defects and path-
ologies. The different ciliopathies related to non-motile
cilia dysfunction often affect renal tissue and are typic-
ally diagnosed during childhood (1, 2).
For clinical purposes including diagnosis and interven-

tion, primary patient material is of vital importance.
Obtaining patient material from pediatric ciliopathy pa-
tients via blood samples or skin biopsies can be traumatic
for the patients and their parents/caregivers. Furthermore,
patients and parents are often reluctant to travel to a med-
ical center to donate material purely for research. Despite
these difficulties, primary ciliated cells from patients are
extremely useful in researching ciliopathies and obtaining
them may one day be an important part of routine clinical
practice. We sought a child-friendly solution to derive
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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Fig. 1 (See legend on next page.)

Ajzenberg et al. Cilia  (2015) 4:8 Page 2 of 6



(See figure on previous page.)
Fig. 1 Cultures and images of URECs in 2D and 3D conditions. (A) Urine sample 24 h after collection at ×4 magnification. Asterisks indicate squamous
cells, and black arrows indicate transitional cells. Scale bar 200 μm. Note that renal epithelial cells are not apparent. (B) Renal epithelial cells in culture
12 days after collection at ×4 magnification. Note that there are two morphologically distinct types of renal epithelial cells, marked with a white or black
arrow. Scale bar 200 μm. (C) Wild-type UREC 3D spheroids. Megalin indicates that cells composing spheroids can be derived from the proximal tubule,
while AQP2 was used as a marker for collecting duct cells. Nucleus (DAPI, blue); megalin and AQP2 (red); and ZO-1 (green). Scale bar 10 μm. (D) Wild-type
UREC 3D spheroids. Cilia are indicated with white arrows. Nucleus (DAPI, blue); Ac. Tubulin (white); and ZO-1 (green). Scale bar 10 μm. (E) Wild-type URECs
in 2D monolayer. Nucleus (DAPI, blue); Ac. Tubulin (white); pericentrin (PCNT, red). Scale bar 10 μm
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valuable patient material that would normally be dis-
carded, without causing the patient any physical or emo-
tional discomfort. Here, we describe our experience [1]
isolating renal epithelial cells from regular urine samples,
called urine-derived renal epithelial cells (URECs), and [2]
harvesting fibroblasts from spontaneously shed deciduous
teeth; both cell types have a primary cilium.
Urine-derived epithelial cells
Isolation and expansion
Renal epithelial cells are regularly sloughed off of the
renal tubule into the urine. These cells can be collected
from the urine and specifically cultured to support pro-
liferation of renal epithelial cells, while suppressing the
growth of other cell types present in the urine (e.g., tran-
sitional and squamous cells) [3]. Urine was collected
from patients and controls within the AGORA study
protocol (Aetiologic research into Genetic and Occupa-
tional/environmental Risk factors for Anomalies in chil-
dren; http://www.agoraproject.nl/). The study protocol
was approved by the regional Committee on Research
Involving Human Subjects, Medisch Ethische Toetsings-
commissie of the University Medical Center Utrecht
(UMCU), the Netherlands and the parents submitted
written informed consent for participation.
Approximately 25–150 ml of mid-stream urine is col-

lected inside of a sterile container. The samples may be
processed immediately or stored at 4 °C for up to 4 h,
which allows transporting samples to a laboratory facility,
as urine collection can be done inside or outside of a med-
ical center, e.g., at the home of the patient. We regularly
collect urine samples at the home of patients, because par-
ents are more likely to approve participation in research,
and then we transport the samples on ice or cold packs.
Through a series of centrifugation and washing steps,

cellular material is isolated and plated on a 24-well plate
using renal epithelial growth medium and incubated at
37 °C. Initially, several cell types (squamous and transi-
tional cells) are present, and no URECs are visible
(Fig. 1A). Primary medium, which is used to enhance
initial adherence and survival, is added for 3 days. After
day 3, renal epithelial proliferation medium, which se-
lectively supports renal epithelial proliferation, is used
and changed daily. Early UREC colonies become visible
3–15 days after sample collecting and cell isolation. Cells
are ready for passaging at 80–90 % confluence around
9–20 days from collection (Fig. 1B).
Analysis and current applications
One advantage of URECs is that they can grow in 3D cul-
ture to develop spheroids, which are physiologically rele-
vant models of the renal epithelium. After 3–5 days in
matrigel, fully formed spheroids develop apicobasal polar-
ity, ciliate, and form complete lumens (Fig. 1C), although
we do not observe as many clear lumens as we see in
mouse inner medullary collecting duct cells [4]. Such char-
acteristics make these UREC spheroids an excellent ap-
proximation of in vivo renal epithelial conditions. The
matrigel can be subsequently dissolved and spheroids fixed.
We show that URECs from healthy controls are made up

of a mean of 35 % (range 30–40 %, n = 2) megalin-positive
proximal tubule cells and 57.5 % (range 50–70 %, n = 4)
aquaporin 2 (AQP2)-positive collecting duct cells (Fig. 1C).
We have demonstrated that whereas URECs from healthy
individuals ciliate well in both monolayer (mean 54 % cili-
ated, range 52–56 %, n = 2; Fig. 1E) and 3D culture (mean
58.2 % ciliated, range 44–72 %, n = 4; Fig. 1D), URECs from
Joubert syndrome ciliopathy patients did not (mean 29 %
ciliated, range 25–33 %, n = 2) [5]. The proportion of cili-
ated cells is obtained by examining at least 100 nuclei per
sample. To date, we have isolated renal epithelial cells from
n = 50 healthy donors and n = 20 from ciliopathy patients.
However, several of these samples have become contami-
nated with bacteria or fungi and several samples have failed
to deliver viable cells.
While cultured renal epithelial cells have been extensively

used in spheroid models to test gene variants, the use of
human URECs in kidney and ciliopathy research offers
patient-specific information and the potential to screen
for pharmaceutical intervention. For example, we recently
showed that URECs from a Joubert syndrome patient with
a CEP290 mutation were grown in spheroids and partially
rescued by treatment with a Hedgehog agonist, confirming
involvement of the Hedgehog pathway in nephronophthisis
in Joubert syndrome [5]. Furthermore, we have observed
that these cells grow in a monolayer (Fig. 1E), are amenable
to siRNA knockdown (not shown), and can be used for im-
munofluorescence on cover slips.

http://www.agoraproject.nl/
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Tooth-derived fibroblast-like cells
Isolation and expansion
An alternative non-invasive source of ciliated cells from
pediatric ciliopathy patients is spontaneously shed decidu-
ous (milk/baby) teeth shed between the ages of 5 and
14 years. Within 24 h of spontaneous loss of the tooth, the
tooth should be kept moist and cool (ideally 4 °C) and
Fig. 2 Cultures of cells derived from deciduous teeth. (A) Tooth fragments
culture conditions. (B) Fibroblast-like cells were observed in the culture pla
×4 magnification. Scale bar 200 μm. (C) Immunofluorescence imaging of fi
after 24-h serum starvation. Cells from one donor are shown here. Nucleus
or 10 μm. (D). Imaging of fibroblast-like cells from a healthy donor showing cilia
(PCNT; red). Scale bar 10 μm
transported to the laboratory facility. The PBS-washed en-
amel casing is then crushed by a hammer in semi-sterile
conditions. Tooth fragments are taken into culture under
standard fibroblast cell culture conditions and incubated at
37 °C in a 12-well plate in Dulbecco’s Modified Eagle
Medium (Fig. 2A). Fibroblast-like cells were observed in
the culture plate after approximately 2 weeks. These cells
are taken into culture in a 12-well plate under standard fibroblast cell
te after approximately 2 weeks (left) and expanded ~1 week (right) at
broblast-like cells from healthy donors (n = 3) shows 25–51 % ciliation
(DAPI, blue); ARL13B and INPP5E (red); Ac. Tubulin (green). Scale bar 5
and centrosome. Nucleus (DAPI, blue); Ac. Tubulin (green); pericentrin
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can be frozen and thawed for later use using standard cell
culture protocols (Fig. 2B). Teeth were collected from chil-
dren within the AGORA study protocol approved by the
regional Committee on Research Involving Human Sub-
jects. Parents submitted written informed consent for
participation.

Analysis and current applications We show that after
24 h of serum starvation, a mean of 41.3 % (range 25–51 % cili-
ation, n = 3, Fig. 2) of the fibroblast-like cells from the
tooth of healthy donors ciliate. Common ciliary markers
are expressed, such as ADP-ribosylation factor-like protein
13B (ARL13B), inositol polyphosphate-5-phosphatase E
(INPP5E) (Fig. 2C) which are associated with Joubert syn-
drome, as well as centrosome marker pericentrin (PCTN)
(Fig. 2D), thus indicating that these cells are an excellent
model for investigating ciliary disorders, e.g., Joubert syn-
drome. To date, we have isolated n = 10 healthy fibroblast-
like tooth-derived cells; isolation of patient fibroblast-like
tooth-derived cells is in progress.
Discarded milk teeth are a child-friendly source of pa-

tient material to study ciliopathies or other diseases. The
tooth-derived cells can be used for diverse research ap-
plications including genomic, epigenetic, or metabolic
analysis. Although the timing of the tooth being shed is
difficult to plan, the use of milk teeth as a source of ma-
terial for research is an attractive low-stress option that
should be discussed with the parents.

Discussion
Thus far, we have had promising results in using both
tooth- and urine-derived primary ciliated cells for the in-
vestigation of human ciliopathies. The usefulness of these
methods lies in their non-invasive nature. With these
techniques, the pain and inconvenience associated with
obtaining blood samples and skin biopsies need not limit
the availability of patient material. Although we have used
these cells for investigating ciliopathies, they may also be
used in other areas where primary cells are needed.
Furthermore, their collection and expansion are rela-
tively simple techniques that can be performed by an
individual with basic laboratory experience and no spe-
cialized equipment.
A common difficulty with the isolation and expansion

of primary cells is contamination due to semi-sterile col-
lection, and we have found our techniques to be no ex-
ception. Fungal and/or bacterial infections may appear
several days after plating. Minimizing the risk of con-
tamination in both cell types involves performing all
work in a sterile laminar flow hood and treating prophy-
lactically with antibiotics and antifungal agents in the
media. For URECs, ensure that urine is carefully col-
lected mid-stream. The tooth-derived cells require ap-
proximately 4 weeks of culturing, from the point of
collection until sufficient cells are present for experi-
mentation and freezing. This length of time in culture is
not ideal for clinical purposes and also increases the risk
of contamination. Another limitation of both techniques
is that processing must occur within a specific time
frame (4 h for URECs and 24 h for tooth cells). For a
more detailed discussion of UREC types seen in culture,
see Dorrenhaus et al. [6].

Conclusion
As evidence continues to accumulate showing that the
primary cilium has a central role in development and
disease, the need for readily available and ciliated patient
cells will increase. Here, we introduce two methods for
the non-invasive acquisition of primary patient cells that
ciliate well. We believe that these cells can be utilized
for further ex vivo study of ciliopathies, drug testing,
DNA mutation analysis, metabolomics, and functional
testing and may be used as sources for the generation of
inducible pluripotent stem cells.
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