6,824 research outputs found

    Thin-film flow in helically wound rectangular channels with small torsion

    Get PDF
    Laminar gravity-driven thin-film flow down a helically-wound channel of rectangular cross-section with small torsion in which the fluid depth is small is considered. Neglecting the entrance and exit regions we obtain the steady-state solution that is independent of position along the axis of the channel, so that the flow, which comprises a primary flow in the direction of the axis of the channel and a secondary flow in the cross-sectional plane, depends only on position in the two-dimensional cross-section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity and pressure in terms of the free-surface shape, the latter satisfying a non-linear ordinary differential equation that has a simple exact solution in the special case of a channel of rectangular cross-section. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier–Stokes equations. The present work has particular relevance to spiral particle separators used in the mineral-processing industry. The validity of an assumption commonly used in modelling flow in spiral separators, namely that the flow in the outer region of the separator cross-section is described by a free vortex, is shown to depend on the problem parameters

    Symmetry Analysis of Multiferroic Co_3TeO_6

    Get PDF
    A phenomenological explanation of the magnetoelectric behavior of Co_3TeO_6 is developed. We explain the second harmonic generation data and the magnetic field induced spontaneous polarization in the magnetically ordered phase below 20K.Comment: Phys rev B Rapids, to appea

    Thin-film flow in helically wound shallow channels of arbitrary cross-sectional shape

    Get PDF
    We consider the steady, gravity-driven flow of a thin film of viscous fluid down a helically wound shallow channel of arbitrary cross-sectional shape with arbitrary torsion and curvature. This extends our previous work [D. J. Arnold et al., “Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature,” J. Fluid Mech. 764, 76–94 (2015)] on channels of rectangular cross section. The Navier-Stokes equations are expressed in a novel, non-orthogonal coordinate system fitted to the channel bottom. By assuming that the channel depth is small compared to its width and that the fluid depth in the vertical direction is also small compared to its typical horizontal extent, we are able to solve for the velocity components and pressure analytically. Using these results, a differential equation for the free surface shape is obtained, which must in general be solved numerically. Motivated by the aim of understanding flows in static spiral particle separators used in mineral processing, we investigate the effect of cross-sectional shape on the secondary flow in the channel cross section. We show that the competition between gravity and inertia in non-rectangular channels is qualitatively similar to that in rectangular channels, but that the cross-sectional shape has a strong influence on the breakup of the secondary flow into multiple clockwise-rotating cells. This may be triggered by small changes to the channel geometry, such as one or more bumps in the channel bottom that are small relative to the fluid depth. In contrast to the secondary flow which is quite sensitive to small bumps in the channel bottom, the free-surface profile is relatively insensitive to these. The sensitivity of the flow to the channel geometry may have important implications for the design of efficient spiral particle separators.D. J. Arnold, Y. M. Stokes, and J. E. F. Gree

    Air Shower Simulation and Hadronic Interactions

    Full text link
    The aim of this report of the Working Group on Hadronic Interactions and Air Shower Simulation is to give an overview of the status of the field, emphasizing open questions and a comparison of relevant results of the different experiments. It is shown that an approximate overall understanding of extensive air showers and the corresponding hadronic interactions has been reached. The simulations provide a qualitative description of the bulk of the air shower observables. Discrepancies are however found when the correlation between measurements of the longitudinal shower profile are compared to that of the lateral particle distributions at ground. The report concludes with a list of important problems that should be addressed to make progress in understanding hadronic interactions and, hence, improve the reliability of air shower simulations.Comment: Working Group report given at UHECR 2012 Symposium, CERN, Feb. 2012. Published in EPJ Web of Conferences 53, 01007 (2013

    Hydrodynamics of confined colloidal fluids in two dimensions

    Get PDF
    We apply a hybrid Molecular Dynamics and mesoscopic simulation technique to study the dynamics of two dimensional colloidal discs in confined geometries. We calculate the velocity autocorrelation functions, and observe the predicted t1t^{-1} long time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t1t^{-1} tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge, but instead depends logarithmically on the overall size of the system.Comment: RevTex 13 pages, 9 figure

    Timber Felling Time, Costs, and Productivity in Arkansas

    Get PDF
    Sixteen stands were harvested by either clearcut, shelterwood, group selection, or single-tree selection methods. Harvest productivity was evaluated in four consecutive years (1991 through 1994). Three of the stands had uneven-aged structure, the other 13 were typical, mature, even-aged stands. Harvest intensity (proportion of basal area removed) ranged from 0.27 to 1.00. Logging contractors used one to three sawyers with production chain saws to fell trees on all 16 tracts. There was no statistical difference in production rate between sawyers on the same stand. Harvested sites were similar in slope, average diameter at breast height (DBH) and pre-harvest number of stems by two inch diameter class. Total felling time (including walk, acquire, fell, and limb-top times) was inversely related to harvesting intensity and directly related to stem DBH. Factors affecting total felling time (in decreasing order of importance) were DBH of harvested stems, intertree distance, and harvest intensity. Felling productivity (100 cubic feet/hour) was found to be highest under high intensity harvests oflarge trees and lowest under low intensity harvests of small trees. Productivity was more sensitive to stem diameter than harvest intensity. Felling cost was shown to have an inverse relationship with felling productivity

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Symmetry Analysis for the Ruddlesden-Popper Systems, Ca3Mn2O7 and Ca3Ti2O7

    Get PDF
    We perform a symmetry analysis of the zero-temperature instabilities of the tetragonal phase of Ca3Mn2O7 and Ca3Ti2O7 which is stable at high temperature. We introduce order parameters to characterize each of the possible lattice distortions in order to construct a Landau free energy which elucidates the proposed group-subgroup relations for structural transitions in these systems. We include the coupling between the unstable distortion modes and the macroscopic strain tensor. We also analyze the symmetry of the dominantly antiferromagnetic ordering which allows weak ferromagnetism. We show that in this phase the weak ferromagnetic moment and the spontaneous ferroelectric polarization are coupled, so that rotating one of these ordering by applying an external electric or magnetic field one can rotate the other ordering. We discuss the number of different domains (including phase domains) which exist in each of the phases and indicate how these may be observed.Comment: 21 pages, 14 figure

    Ex-situ evaluation of PTFE coated metals in a proton exchange membrane fuel cell environment

    Get PDF
    Metallic-based bipolar plates exhibit several advantages over graphite-based plates, including higher strength, lower manufacturing cost and better electrical conductivity. However, poor corrosion resistance and high interfacial contact resistance (ICR) are major challenges for metallic bipolar plates used in proton exchange membrane (PEM) fuel cells. Corrosion of metallic parts in PEM fuel cells not only increases the interfacial contact resistance but it can also decrease the proton conductivity of the Membrane Electrode Assembly (MEA), due to catalyst poisoning phenomena caused by corrosive products. In this paper, a composite coating of polytetrafluoroethylene (PTFE) was deposited on stainless steel alloys (SS304, SS316L) and Titanium (G-T2) via a CoBlast™ process. Corrosion resistance of the coated and uncoated metals in a simulated PEM fuel cell environment of 0.5 M H2SO4 + 2 ppm HF at 70 °C was evaluated using potentiodynamic polarisation. ICR between the selected metals and carbon paper was measured and used as an indicator of surface conductivity. Scanning Electron Microscopy (SEM), 3D microscopy, Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD), and contact angle measurements were used to characterise the samples. The results showed that the PTFE coating improved the hydrophobicity and corrosion resistance but increased the ICR of the coated metals due to the unconductive nature of such coating. Thus, it was concluded that it is not fully feasible to use the PTFE alone for coating metals for fuel cell applications and a hybrid coating consisting of PTFE and a conductive material is needed to improve surface conductivity.Enterprise Irelan

    Polarization Squeezing of Continuous Variable Stokes Parameters

    Get PDF
    We report the first direct experimental characterization of continuous variable quantum Stokes parameters. We generate a continuous wave light beam with more than 3 dB of simultaneous squeezing in three of the four Stokes parameters. The polarization squeezed beam is produced by mixing two quadrature squeezed beams on a polarizing beam splitter. Depending on the squeezed quadrature of these two beams the quantum uncertainty volume on the Poincar\'{e} sphere became a `cigar' or `pancake'-like ellipsoid.Comment: 4 pages, 5 figure
    corecore