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nel of arbitrary cross-sectional shape with arbitrary torsion and curvature. extends our previous work!
on channels of rectangular cross section. The Navier-Stokes equations
coordinate system fitted to the channel bottom. By assuming that the
width and that the fluid depth in the vertical direction is also small eempared to its typical horizontal extent,
we are able to solve for the velocity components and pressure rtic ing these results, an ODE for
the free surface shape is obtained, which must in general bedsolved numerically. Motivated by the aim of
understanding flows in static spiral particle separators used in mingral precessing, we investigate the effect of
cross-sectional shape on the secondary flow in the channel cross-section. We show that the competition be-
tween gravity and inertia in non-rectangular channels is q 1itativ1y similar to that in rectangular channels,
but that the cross-sectional shape has a strong inﬂuic,: on ‘the bréakup of the secondary flow into multiple

We consider the steady, gravity-driven flow of a thin film of viscous fluid dg{ lically-wound shallow chan-

a hi
eﬁ esseddin a novel, non-orthogonal
annel depth is small compared to its

clockwise-rotating cells. This may be triggered by small changes to the channel geometry, such as one or more
bumps in the channel bottom that are small relagive*so-the fluid depth. In contrast to the secondary flow
which is quite sensitive to small bumps in the channel bottioni, the free-surface profile is relatively insensitive

to these. The sensitivity of the flow to the chafnmel geometry may have important implications for the design
of efficient spiral particle separators.

~

I. INTRODUCTION

and in industrial applications. An importa e of the latter are flows in spiral particle separators — devices
used in the mining and mineral proces§ing in igs to separate ores and clean coal® . They consist of a helically
wound channel, typically with a curved ngho'm\down which a slurry of mixed particles and water flows. The depth
of the channel is typically small compared toyits width, i.e. the channels are shallow. As the slurry flows down the
channel, the particles tend to se ra‘l&S“goss the width of the channel according to their weight, so that, in principle,

Fluid flows in helical geometries are of inte ‘estwh El‘biology7 e.g. in the circulatory system?* or in the cochlea®,
m
g’é&

ow can be split into separate streams each containing one type of particle. More
recently, biomedical researc designed microfluidic devices consisting of closed spiral ducts which aim to use
the same principles to sepafiate girculating tumour cells from the blood!?.
Whilst spiral particle séparators hg(fe been widely used for many years, and academic interest dates back to experi-
mental work by Hollan —BQKZ;K thematical modelling of the flow in them has been limited, and the design process
rime

is based mainly on tion; see Holland-Batt?® for a summary. Experimental and numerical investigations
into the flow havedbeen mndertaken, and empirical formulae derived to fit observed data. However, many of these
restrictive assumptions: for example, a model developed by Holland-Batt” assumed a Man-
1 of the channel, and a free vortex in the outer region. Validating these assumptions, and
general, has proven difficult, with experimental errors in measurement of flow velocities estimated

Péfertheless, a series of experiments'!314 showed that a complex secondary flow exists, that
state flow profile appears relatively quickly (within 2-3 turns down the spiral), and that

d17719

mee and of dilute particulate flow where the particles are assumed not to modify the particle-free
im of all of the above studies is to obtain an improved quantitative understanding of fluid flows in spiral
separators to assist in their design. Thus the effects of geometrical factors such as curvature, torsion and cross-
sectional profile on the flow are of particular interest. Motivated by these applications, recent work has considered
the idealised problem of free surface flow of Newtonian fluid in a helically wound channel?!. To our knowledge these
authors were the first to exploit the fact that the depth of fluid in the separator is typically small relative to the


http://dx.doi.org/10.1063/1.4973670

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

‘ s Ifﬁ awfiel width, which allowed them to use the thin-film approximation to obtain a reduced model for the flow. Their
sundy was restricted to helically symmetric flows in rectangular channels with small curvature and torsion, but in
PUbI|§1i  8ime they were able to demonstrate good agreement between their thin-film model and the results of numerical
simuiations of the full helically-symmetric Navier-Stokes equations. Subsequently, this thin-film model was extended
to the case of rectangular channels of arbitrary curvature and torsion by Arnold, Stokes, and Green'. They found
that, for certain values of the curvature, torsion and fluid flux, two counter-rotating cells can develop in the secondary

flow in the cross-section, which could have important implications for the efficiency of particle separation.
Whilst the shape of the channel cross-section is one of the main factors that separator designers are able to control,
previous work by Stokes et al.?' and Arnold, Stokes, and Green'! considered ;;11{ rectangular channels, so as to

simplify the governing equations. Here, we have relaxed this assumption so as to cofisider the effects of cross-sectional
shape on the flow. This has, in turn, had a number of significant consequences*notvmet in previous work. Firstly
the coordinate system, and in particular the direction normal to the channe om, loyed in Arnold, Stokes,
and Green' was found to lead to complications in the case of non-rectangulafichannel cross-sections so that we have
here formulated a general coordinate system with the direction normal to t el bottom replaced by the vertical

to express the Navier-Stokes equations in this general coordinate syst tain the thin-film approximation,
assuming the fluid depth to be small in the vertical direction . Furthémpofesthe solution of the ODE for the fluid
depth cannot be obtained analytically as in the rectangular chan
point out that, whereas for channels of rectangular cross-section the posigions of the side walls are known and the
(non-zero) depths of fluid at each wall are determined for a given fluxy for cﬁnnel cross-sections of arbitrary shape the
fluid depth at either side can be zero, in which case the horizofital positi ) of the contact point(s) of the free surface
with the channel bottom must be determined for a given flux, Thus“there is an increased number of parameters in
the problem which calls for a more complicated algorithm te_handle all the various possibilities.

Although a consideration of channels of non-rectangular cregs-section is new in the context of flow in helically-
wound channels, for the case of a straight channel M oss-sectional shape, the free surface flow problem
has been studied by a number of authors, including en King 2?2, Holland, Duffy, and Wilson?? and Wilson
and Duffy 242>, Their work has considered addifi cts, such as time-dependence, surface tension, and heat
transfer which are neglected here. Neither surface témgion or heat transfer are relevant to spiral particle separation
in unheated channels with typical widths of metre,or more while, at present, we seek steady-state solutions
and leave time-dependence to future work,s We icipate that the presence of particles in the slurries transported
in spiral separators will affect the flow bu theypresent work, particle effects are also neglected to enable us to
develop a basic understanding of the flui \0\ note that Lee, Stokes, and Bertozzi?® considered the flow of a
monodisperse suspension in a helical ¢ Nhe limiting case of small channel slope. We aim to consider particle
effects in future work.

This paper is organised as follows. In section«I we introduce the coordinate system and governing equations, apply
a thin-film scaling, and presentf the solution method. In section ITI, we present and discuss results, before giving
conclusions in section IV.

£
Il. MATHEMATICAL ?6DEL /

We consider free uﬁ%}‘%\'u a helically wound channel; for the purposes of illustration, a channel of parabolic
cross-section is s

infigure 1. Here we extend previous work by allowing the cross-sectional shape to be arbitrary,

ingdnlet and outlet regions and assume that the flow is helically symmetric; that is, independent of
elixfof the same pitch and orientation as the channel centreline.
ions of the flow are the steady Navier-Stokes equations,

p(v-Vv)==Vp+V-(uS) - pgk, (1)

V-v=0. (2)

We choose to use a coordinate system that permits a simple description of the flow geometry, as described below. We
note similar systems have been used in Manoussaki and Chadwick®, Lee, Stokes, and Bertozzi 2® and Arnold, Stokes,
and Green'! for rectangular channels with the bottom aligned horizontally in the radial direction. Here, for channels
of arbitrary shape, we introduce a new term so that the channel bottom remains a coordinate surface.
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FIG. 1: A helically-wound channel with parabolic cross—sec\*c;\'r@)centreline is a helix of radius A and pitch 27 P.

N

A. Coordinate system \IT
We define a point in the fluid by its radius » (measured horizontally from the vertical axis around which the channel

is wound), angle 8 about the vertical axis Q& férence position, and vertical distance z from the channel bottom,
as

x(r, B, z)M)i +rsin(B)j + (PB+ H(r) + 2)k (3)

where 27 P is the pitch of thedhelix and H(r) is the channel bottom profile. The coordinate system is shown in
figure 2, together with a verficallyzcut dross-section of the channel. For a channel with rectangular cross-section,
H(r) = 0 and this coordinafe system'ig equivalent to that used by Lee, Stokes, and Bertozzi?® and Arnold, Stokes,

and Green'. Since thi{/'ﬁ a on—OI;G}lOgonal coordinate system, the techniques of tensor calculus must be used to

write the Navier-Stokesfequatio he details are similar to Lee, Stokes, and Bertozzi 2%, however we choose not to
introduce the coordina eMn ormal to the channel bottom, as with an arbitrary cross-section it is simpler to
visualise the vertical direction than the normal direction and use of the normal coordinate direction leads to non-
uniqueness of coordimates for points in the fluid domain. We omit the details of the derivation, but present
the helically- m;ne ic (i.e. f-independent) form of the Navier-Stokes equations. After defining ® as

~ V.
AN

we can write the three components of the Navier-Stokes equations as, in the radial direction,

S ’UT%—I—’U'Z%—TWQ’UB
. P or 0z

2,,r r r
__op —l—H'(r)@ +u (8 o+ Lov _ [%H'(T)+2H"(r)] dv

P2
d=1+—7+H'(r)? (4)
T

or 0z or? r Or 0z
9%v" 9%v" 8%v* 2P 9P 1
_ ! - / P
SH'(r) ozor ® 022 H'(r) 022 r 0z 12 ) ’ (5)
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FIG. 2: The helical coordinate system. On the left is shown a helixagith radius r and pitch 27 P. On the right is a
vertically-cut cross-section of a helical channel Wit% rved bottom.

in the axial direction, ( ;)
L

r2 9z 0z0r 022 ror 1 0z

: \
2y ¢ 248 248 8 r
:Pap+u<—8” [H”(r)—i—gH’% Qﬂ'(ma“ rolt 30 ——2P‘%>, (6)

and in the vertical direction,

ov* ov*®
p(vT / +UZL+TH/(T)’UB’UB+H/

or 0z
Op Op H"(r) = 2H'(r) 0?v*
_ g _ " r
=H (r)—ar cb—az +u ([QH (r) (r) + = |Vt 53

52 Trar o

+ ﬁi;z - 2H”(T)H’(r)} 0~

0%v*  10v* 2P 81}5) g

The continuity equation’is, y

and some simplificagions are necessary to facilitate analytic progress. The helical symmetry assumption means that

the flgw is'ind ent of the distance along helices with the same pitch as the channel centreline, and our coordinate
system allows%us to impose this condition by making all quantities independent of 3. Since the fluid depth in spiral
separat ically very small relative to the channel width, we use a thin-film approximation. Using a characteristic

and the channel half-width a, § = h/a is a measure of the aspect ratio of the fluid. In the thin-film
appreximation, we assume § < 1. We nondimensionalise the governing equations using the channel half-width a, and
locity scale U, as follows (using hats to denote dimensionless variables and parameters)

r=a(A+9), z=ads, (9)

v = (v,u,w) = (U§0, Utt, Us*b) (10)
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Al P p="Csh. H(r) = adH(). ()

PUbII'%EIeI rrllgf _dimensional radius of the channel centreline A, is given by A= A/a, where A is the dimensional radius of
the channel centreline. The new variable ¢ is a dimensionless radial position, measured from the designated centreline
of the channel. Explicit definitions of U and ¢ in terms of the physical parameters of the problem will be given later
in equation (32).

_ We next define some notation that will help simplify the equations. The channel centreline has dimensionless radius
A, and we define the nondimensional curvature-like parameter ¢ = 1/ A, and the dimensionless pitch, P = P/a. The
slope of the channel centreline, A, is given by A = ]5//1 The dimensionless ‘?ion, 7, and curvature, &, of the

channel at g are given by \
K(9) = AT a)TG) 7(9) = AG)&(9) ) (12)
where
AG) = \ (13)
C14ey’
+ ey Q\‘

is the slope of the channel bottom at ¢, and
(14)

After nondimensionalising and taking the thin-film limit, § —# 05 the leading order governing equations are (dropping
hats on dimensionless variables),

8%v eRe

02?2 (14 ey)Y?

N

where we have defined the Reyn umber, Re, and Froude number, Fr, as
R

(15a)

(15b)

(15¢)

pUad U
e= , Fr= . (17)
4 Iz Vgad
The boundary conditio?r o-slip /n the channel bottom,
u=v=w=0o0nz=0, (18)
no stress on the fre s%ce,
Ju Ov
= — = — = = 1
p=5t =" =0onz=hiy), (19)
and the kinematie,condition at the free-surface,
e
dh
3 v@ =w on z = h(y). (20)

odel for thin-film flow in a shallow helically-wound channel of arbitrary cross-section has a form that is
inely si?ilar to that given in Arnold, Stokes, and Green'! for a channel of rectangular cross-section and which

min\g the horizontal positions of the points of contact of the free surface with the channel bottom.

iscussed in Stokes et al.2!, Lee, Stokes, and Bertozzi2® and Arnold, Stokes, and Green', we cannot impose
no-slip conditions at vertical channel walls, should they exist. This is a result of the thin-film scaling, and we would
anticipate the presence of thin boundary layers near vertical walls, which are not captured in our leading order
equations, and which do not have a significant effect on the flow away from the vertical walls. We will discuss this
further in section ITT A.
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PUblISt}IﬁLg‘ ading order thin-film Navier-Stokes equations (15a)—(15¢) can be solved by integrating, subject to boundary
conditions, to give

Re (z — h)

p= —? T (21)
~ Re A 2z(2—2h)
CEETE 7 /\ )
oo R’ A’ 2(°—6ht + 10h2z3 - 16h5) 5
T R (1+ey)Td
Re  eA*  (z2-— h) +h3 Re 1 ( (2 — 2h (23)
Fr? (1+ ey)Y? Fr2 T2

—
By integrating the continuity equation (16), changing the order of{differentiation and integration, and requiring that
there is no net flux into or out of the fluid domain, we obtaln

h(y)
(24)
0
which can be evaluated and rearranged to give a differe&l\al\equr ion for the fluid depth h(y),
dh 6 Re? dH
dh_ 6 Re? N, A e5)
dy 35 Fr® (1+ey)Y 2(l+e)T dy

This is a Chini differential equation, and in g h?has o analytic solution and must be solved numerically (we
use the ode45 function provide by Madtlab) the special case of a rectangular channel, where H(y) = 0, the

free-surface equation does have an analytlc 1on which can be found using the substitution & = h=3.
Substituting (25) into (23) gives a S m r the radial velocity component,
Re®  eA? 42h Oh 24— T2h*2% +32h°2  Re  eA? 82 — 15hz? +6h%2 (26)
vV=——" N .

Fr* (1+ ey)T 840 R (1+ey)Y3 12

We note that due to the very large,denominator in the first term, v is approximately zero when the second term is
zero, which occurs when z 3)1/16 ~ 0.5785h. Thus the secondary flow is vertical at roughly 58% of the

fluid depth. /
A streamfunction, 1 @Q dary flow (the radial and vertical components of v), is defined by
oY oY
e —— =—-(1 2
D G = (ran. 3 =—(+au, (21)
and we specif =/0 on“the channel bottom z = 0 and the free surface z = h(y), which together form a closed

streamline.
Integrati g-the firsteequation in (27), we obtain the streamfunction as

— y Re €A? 22(z — h)(z — 2h)? (2% — 2hz — 4h2) Re eA? 22(z — h)(2z — 3h) (28)
TR TS 840 2 T3 12 ’
ich canube Substituted into the second equation in (27) to give the vertical velocity w.
Kﬁu&ﬁux down the channel, Q, is scaled by da?U and is given by
Yr h(y)
— / / u(z,y)dzdy
y J0
1Re [ AR3
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‘ s I\t; #¢ y = y; and y = y, are the left and right contact points of the free-surface with the channel wall(s) or channel
ottom. The minus sign appears because the positive axial direction points in the upstream direction, thus u is

PUb“ISe Hﬂigs The cross-sectional area of the fluid, scaled by da?, is given by
Yr
Q- / hdy. (30)
Y

These integrals cannot be computed exactly (even in the rectangular channel case) and must be determined numeri-
cally.

In order to examine solutions, we must prescribe the velocity scale U, and thin-filih parameter §. Following Arnold,
Stokes, and Green!, we require that the coefficient on the z(z —2h)/2 term in (22); and the coefficient on the h* term
in (25) both have unit value at y = 0 to give non-trivial free-surface shapes an EQSV solutions. These scalings give,

Ei/\ =1 and ERe A

Fr? (14 A2)%/2 35 (14 )2)

= (31)

which can be rearranged, using the definitions of the Reynolds and r@q}n ers as given previously, to give
e ge

expressions for the velocity and film-thickness scales U and § in te ms o ometric and fluid parameters, as
1/3 1/3
35\ 1+ A2 35 (I A2)3 g2
U= |2 A gm and B — _(34'7)“_ _ (32)
6 e2XN p a ex2  gp?

The thin-film assumption requires 6 < 1, and using typic Value@r a channel of half-width ¢ = 0.1 m carrying
water (p=10% kg m~3, yu = 1073 kg m~3), we require

< 10", (33)

which is always true for channels of physical i te.%t, and fails only for very flat (A — 0), gently curving (¢ — 0), or

steeply sloping (A — oo) channels. -
D. Implementation \\

In Arnold, Stokes, and Green' in which ) =0, yy = —1 and y,. = 1, once the radius and pitch of the channel
centreline were defined (using € an the only parameters left were h;, the fluid depth at the left channel
wall y;, h,, the fluid depth atithe right channel wall y,, as well as @, the fluid flux down the channel.
Specifying one of these thrge parameters determined the other two. The flux was chosen as the most physically
relevant parameter to spe Eér a channel with arbitrary cross section, we must add y; and y, to the parameters

e

of the problem, which now n er/ﬁve, {y1, Yr, hi, hey Q}. Three of these must be specified, which determine the
other two. It is possi
different cases. We
the correspondin,
depending on t

av o or non-zero fluid depth at either edge of the fluid domain, leading to several
that > 0 and h, > 0, with non-zero values meaning there is a vertical channel wall at
and/or y,. For any channel shape, we can again specify the flux, and any two of {y;, y,, hi, hr}
in of interest. The process to obtain a solution can be described in the following steps:

cross-sectional shape H(y), geometric parameters e and A, and the flux Q;
ﬂ
2. Choose Valueio wo of the parameters from {y;, y,, hi, by };

3. Use.a rogt-finding algorithm and the free-surface equation to determine the last two unknown paramters.

We Sometinies choose not to prescribe a flux but simply specify three of the four geometrical parameters and directly

cdlculatesthe fourth and the resultant flux.

=~
1. SULTS

We now investigate solutions of the thin-film equations. Arnold, Stokes, and Green' examined rectangular channels
and drew several conclusions about the effects of ¢, A and flux on the resultant flow. In section III A we show some
results from channels with rectangular cross-section, and by comparing with a nearly-rectangular channel (with no
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FIG. 3: Rectangular channel with e = 0.5, @ = 0.1, and varying A. Note the,chaimel bottom is the bottom of the

figure, z = 0. Arrows 1nd1cate the direction o<ﬁjeco ary flow.
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FIG. 4: Rectangular channel with A =
figure, z = 0.

and varying €. Note the channel bottom is the bottom of the
ate the direction of the secondary flow.

nstrate the small inaccuracy resulting from being unable to impose the no-

el walls. We then move on to investigate non-rectangular channels more
generally. In section IIIB sve consider £hannels with sloping bottoms, which for small slopes are very similar to
rectangular channels. \}?a ider so-called tick shaped channels, with larger slope and a vertical wall on only

one side of the channel. 1 [TH C we look at some channels with curved bottoms.

Q—rectangular channels

"&tan lar cross-section were extensively studied in Arnold, Stokes, and Green'!, and we briefly
hése results to provide a point of comparison with channels of other shapes, noting that the
irection used here is different to the normal direction used in that paper. In figures 3 and 4,
rofiles and streamfunctions, holding all parameters constant with the exception of either A or e.
ves from the inside to the outside channel wall at the free-surface, and from the outside to the
the channel bottom. The secondary flow is generally clockwise rotation around some point, but can
sepérate clockwise rotating cells!. Increasing either A or e, which increases the slope A(y) near the inside

A. Rectangular

Channels wit

¢ the fuid depth at the outside channel wall. In Arnold, Stokes, and Green' this behaviour was explained by
etition of two effects, gravitational force pushing fluid to the steepest part of the channel (the inside wall),
and inertial forces pushing fluid to the outside channel wall.

We now consider the impact of our inability to apply the no-slip boundary condition on vertical channel walls due
to the thin-film scaling. In section II B, it was claimed that in practice we would expect thin boundary layers near the
channel walls, which would not have a significant impact on the results. Stokes et al. 2! compared numerical simulations
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FIG. 5: Rectangular and nearly-rectangular channel, € = O.ka (. Dashed lines correspond to the rectangular
channel, and solid lines to the nearly-rectangular appfexima i(f: ontour levels are the same in both cases.

for a rectangular channel with thin-film results, valid N\ahﬁs of small € and A, which showed excellent agreement
away from the channel side walls, and boundary s.ncar them. We here show the effect of boundary layers by
comparing results for a rectangular channel with results for a nearly-rectangular channel, with no discontinuities in
the slope of the channel wall. We construct s I%Shan 1 with side walls using quartic polynomials that smoothly
join to the flat channel bottom, as -~

where k is the height at the edges of $hé channel, y = £1, and +y* are the positions at which the curved side walls
meet the horizontal chanuel bettom 20 that y* determines how close the channel cross-section is to rectangular. The
secondary flow for a chg( el withek £ 0.5 and y* = 0.9 is shown in figure 5, along with that for a rectangular channel
with vertical walls. We Ng od agreement in the interior of the channel, which deteriorates near the edges,
as expected. The osQotabl ifference is the anticipated existence of boundary layers near the side walls of the
nearly-rectangul nuel which are not seen for the rectangular channel. The free-surface profiles are very similar,
of the rectangular channel is slightly lower than the nearly-rectangular channel because of
rea gained with vertical side walls. The correspondence between the two solutions justifies
s with vertical walls using the thin-film approximation, with the error introduced by the lack of
ndition on the side walls being a local effect that does not change the qualitative behaviour

B: Channpels )th a sloping bottom

Next w.a:onsider channels with a bottom of constant slope k, i.e. H(y) = ky. Figure 6 shows solutions for three
differeng slopes k, each with the same €, A and Q). There is little difference in the free-surface, but there is a significant
effect on slope of the secondary flow. Figure 6(a) shows the secondary flow for a channel with negative slope, which
has broken up into two rotating cells. For £ = 0 and k& = 0.05, the secondary flow does not exhibit multiple rotating
cells. For channels with e = 0.5, A = 0.75, and @ = 0.1, multiple rotating cells are seen for channel slopes less than
roughly k& = —0.02. Thus, the break-up into multiple rotating cells, remarked upon in Arnold, Stokes, and Green', is


http://dx.doi.org/10.1063/1.4973670

0.7 0.7

0.3\< 0.3 > 1 0.3
\
e ——
—0d 0 y 1 —04 0 y 1 ((1\ 0 y 1
(a) k = —0.05 (b) k= } ) k= 0.05
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direction of the secondary <\
0.57 0.5

H(y) H(y) /

+z +z

I

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record. |

[=)
N

70 " —0.5
1 -1 0 1

Y
. \ () A=14
FIG. 7: Tick shaped channel H(y) = y/2, Va 1 Jwith e = 0.5 and @ = 0.15. Arrows indicate the direction of the

condary flow.

els, and_ is influenced by the channel bottom slope. The free surface profiles for the
ry similar, despite the significant changes in the secondary flow. The sensitivity
- ‘discussed in section IIT C.

not limited to rectangular cha
three different channel slopesfare
of the free surface profile wji be urt
If the free surface cont cts'the bo m of the channel at one end and a vertical channel wall at the other we have
what we term a tick-s d chanmel. We have two cases, a channel with positive slope and the vertical wall at the
inside of the channel orMel with negative slope and a vertical wall at the outside of the channel. The main
difference from thesloping chanmel case is that we specify y; = —1 and h,, = 0 or . = 1 and h; = 0 in addition to
the flux, and must 1ne h; and y,, or h, and y;, respectively. In figure 7 we show the effect of changing the
down-channel the channel centreline on the flows in tick shaped channels defined by H(y) = y/2 and with
e=0.5and Q ee that as the slope A increases, the fluid tends to move towards the inner channel wall,
int also moves inwards. The same behaviour is observed when ¢ is increased (results not
shown). T is behayiour is qualitatively similar to the rectangular channel case, with a competition between inertial
ional e%ects. Figure 8 shows the case of a channel bottom shape with negative slope, H(y) = —y/2. As
the inner contact point moving inwards, and the outside fluid depth decreasing. Although not as
the upwards sloping tick-shaped channel, the same behaviour is again seen; increasing the slope tends
the inside of the channel.

hmltlng case of a gently curving and sloping channel (¢ — 0 and A — 0) with H(y) = ky, the free surface
1 (25) can be written as,

—ht k. (35)

For a channel bottom profile with positive slope, k& > 0, this equation has an exact implicit solution. Defining
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FIG. 8: Tick shaped channel H(y) = —y/2, varying A, with e = 0.5 and .
the secondary flow.

x = |k|'/*, we obtain Kw?
1 =
Y~ e = g log X h Y (36)

X3 x+h

rrows indicate the direction of

where y, is the point where the free surface meets the chann botﬂam For downwards sloping channels, with k£ < 0,

the solution is more complicated,
1 \f\\hz’ V2xh
— Yg = lo arctan . 37
vy 44/2x3 & h+ 2\/_X <X2 2 (37)

Figure 9 shows a comparison between these im '\ci?selgtions and numerical solutions to the full free surface equation
(25). Very good agreement is seen, even E*hf%&relatively large values of € and .
« i

The solutions presented above apply to c th £ > 0 and a vertical wall at the inside of the channel, or to
channels with £ < 0 and a vertical w. hevoutside of the channel. Other options at first seem possible, namely,
k > 0 and an outside vertical wall and k O and.an inside vertical wall. However, no solution exists for these latter
cases for the following reason. If the fluid meets the channel bottom, its depth h( ) must reach zero. Then, taking

h(y) = 0 and rearranging the fr —sum‘bsdlﬁerentlal equation (25) gives

dy(h—i—H)—O (38)
and so the free- surface t be 1zontal when it contacts the channel bottom. This means that the fluid can meet
the channel bottom at the ougside of the channel if H'(y) > 0 there, and at the inside of the channel if H'(y) < 0
there. For tick-shaped c annels these restrictions on the sign of H’ ( ) near the free-surface contact point are only
satisfied in the two type$ of channels with solutions (36) and (37). In the cases where no solution exists, the channel
in the fluid, which would pour out.

channels with curved bottoms. Whilst there are many choices, we will first consider a simple
ic chaimel H(y) = 0.5y%. In figure 10 we present plots for this channel for fixed ¢ = 0.5, Q = 0.015 and
thiree di nt’ values of the down-channel slope of the channel centreline \. We first note that since there are no
vergicalychannel walls in this case, the no-slip boundary condition is satisfied along the whole channel bottom, and
with%; = h, = 0, we must determlne the parameters y; and y, for given €, A and Q. In figure 10 we see the change
of y; and vy, with A for our chosen values of @ and €. As for other channel shapes, we see that increasing A tends to
push the fluid to the inside of the channel, which also occurs when e is increased (not shown). Decreasing € or A, or
increasing the flux, causes the fluid to move further to the outside of the channel.

In section III B, it was noted that the secondary flow could be very sensitive to channel shape, but the free-surface
was relatively less sensitive. We now show this for differently-shaped channels. In figure 11 two channels are shown,
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FIG. 9: Upwards and downwards sloping tick-shaped channels. The dashedline represents the analytic solution, and
the solid line represents the numerical solution. Note the d1 fent p meters and ordinate scales in each ﬁgure. In

both figures, y; = —1 and e specified.
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FIG. 10: Parabolic cha \ 0.5, @ = 0.015, and varying A. Flow is clockwise around streamlines.

one with one bump i botto and one with two bumps. Both solutions have the same centreline radius and
pitch, and the same 1annel bottom shape has a clear effect on the secondary flow, splitting it into multiple
independent rotati ce s, one more than the number of bumps. Looking at the streamlines that pass through
the saddle pointg’ (whigh are stagnation points of the secondary flow) we see in figure 11(a) that the two cells are
 flow in the region between the cells and the flow-domain boundaries, while in figure 11(b)
ng circulating flows, one around the inner and central cells and another around all three cells.
however remain remarkably similar. The filled circles represent the centres (found using the
nat on found in section ITC) of the rotating cells, and the crosses represent saddle points of the
. At/both the filled circles and crosses, the secondary flow velocity is zero, and there is only an axial
uid velocity.

s, the lux @ = 1, y; = —1, and y, = 1. We see that the free-surface profile is again fairly similar across
ree bump heights, but there is a break up of the single rotating cell seen in figure 12(a), into two rotating cells
larger rotating cell even when the height of the bump is small, at roughly 5% of the depth of the fluid. As in
figure 11, the filled circles are the centres of local rotating cells of fluid, although the cells are far less pronounced in
these latter cases. In figure 13, we repeat the experiment using a parabolic channel with a narrow Gaussian bump and
find again that the flow separates into multiple rotating cells even for a small bump height of 0.05, roughly 10% of
the fluid depth. For the larger bump with height 0.1, the separate rotating cells become quite large, and a significant
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13

(a) No bump

(b) Bump height 0.05 (c) Bump height 0.10

FIG. 12: Channels with a Wing)in the bottom, e = 0.5, A = 0.8, and @ = 1. Filled circles represent a local
maximum of the streamfunfetiondnd centre of a clockwise rotating cell, and crosses are saddle points. Dashed curves
‘epryéent streamlines passing through saddle points.

proportion of the ss—bctional flow domain is taken up by these structures.

The breakup i
efficiency in s s. We hypothesise that having separate rotating cells could inhibit particle movement
annel. Whilst the break-up into multiple rotating cells can occur in rectangular channels

due to the balance of'gravitational and inertial effects, it is more readily seen as a result of the channel bottom shape.

V. NCLUSION

}?m considered helically-symmetric thin-film flow in helical channels with arbitrary cross-sections. Using a
i aﬁ?ody—ﬁtted coordinate system we obtained a system of equations that can be solved to give a simple
differengial equation for the free surface shape requiring numerical solution. In the special case of small channel
centreline torsion and curvature, we obtained analytic solutions for so-called ‘tick-shaped’ channels.

The influence of the slope (A) and radius (1/¢€) of the channel centreline on the competition between gravity and
inertia and, hence, on the free surface shape and transverse flow, were studied extensively for rectangular channels in
Arnold, Stokes, and Green'. We have observed the same qualitative behaviours in channels of arbitrary shape. The
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downwards slope of the channel bottom is greater nearer to the veggical axis about which the channel is wound and
this slope increases with both A\ and e. When the downwardglepe onsthe‘inside of the channel becomes sufficiently
large gravity dominates and there is a build up of fluid the;ijrgil or smaller slope inertia dominates and fluid is
pushed to the outside of the channel. As in Arnold, Stokes, and Grgen!, the balance between gravity and inertia
may lead to multiple rotating cells of fluid but this does depend on<the channel shape. For example, the secondary
flow did not break into multiple cells for any choice of Xsand e for channels with parabolic cross-section or having a
bottom of constant positive slope from inside to outsi
In fact we have found that the shape of the cross-section has a much stronger influence on the breakup of the
secondary flow than do the downwards slope or ¢ %Bparameters, A and e. Just a small defect in the cross-
sectional geometry may cause a breakup of th ow. If, instead of a rectangular channel, the bottom slopes
slightly downwards from inside to outside or therg is all bump in the channel bottom this will, for some choices of
A, € and flux @ mean a secondary flow with{two rotating cells instead of a single rotating cell. A bump in an otherwise

fl

i

parabolic cross-section also causes the seco 7 to break into two cells and we have numerical evidence that

irface wesults in N + 1 rotating cells. The secondary velocity profile is

eLikoﬂtykgzhabpe. However, the free-surface profile is far less sensitive. Bumps

e sufficient, in some cases, to cause a break-up of the flow into multiple

rotating cells while the free-surfate ile changes little. This finding is potentially important to particle segregation
lo

eststhat defects in or damage to the channel, or a build-up of solid material

length of the channel, may significantly affect the secondary flow, which is
believed to play an import separation characteristics. Of course, imperfections in the channel geometry
are most likely to be lf(gdise d n}éy not, therefore, have much impact on particle segregation. To determine how
far downstream any effectsion thesflow are likely to persist will require solution of the particulate flow problem in a
channel whose shap vﬁmdistance along the centreline (i.e. H, and therefore the flow, would be a function of

B). This is left for €uturefwork.
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