635 research outputs found

    Determining cross sections from transport coefficients using deep neural networks

    Full text link
    We present a neural network for the solution of the inverse swarm problem of deriving cross sections from swarm transport data. To account for the uncertainty inherent to this somewhat ill-posed inverse problem, we train the neural network using cross sections from the LXCat project, paired with associated transport coefficients found by the numerical solution of Boltzmann's equation. The use of experimentally measured and theoretically calculated cross sections for training encourages the network to avoid unphysical solutions, such as those containing spurious energy-dependent oscillations. We successfully apply this machine learning approach to simulated swarm data for electron transport in helium, separately determining its elastic momentum transfer and ionisation cross sections to within an accuracy of 4%4\% over the range of energies considered. Our attempt to extend our method to argon was less successful, although the reason for that observation is well-understood. Finally, we explore the feasibility of simultaneously determining cross sections of helium using this approach. We have some success here, determining elastic, total n=2n=2 excitation and ionisation cross sections to 10%10\%, 20%20\% and 25%25\% accuracy, respectively. We are unsuccessful in properly unfolding the separate n=2n=2 singlet and triplet excitation cross sections of helium, but this is as expected given their similar threshold energies.Comment: 20 pages, 9 figures, submitted to Plasma Sources Science and Technolog

    Training and match load in professional rugby union: Do contextual factors influence the training week?

    Get PDF
    Background: Rugby union demands a multifaceted approach to training, given the multiple physical and technical attributes required to play the sport. Objectives: The aim of this study is to describe the distribution of training throughout the week and investigate how this may be influenced by match-related factors. Methods: Training load data (session Rating of Perceived Exertion [sRPE], total distance and high-speed running [HSR]) were collected from six professional English rugby teams during the 2017/18 season. Five contextual factors were also recorded including: standard of opposition, competition type, result of previous fixture, surface type, and match venue. Results: The day prior to matches demonstrated the lowest training load (101 AU (95% CIs: 0-216 AU) , 1 047 m (95% CIs:1 128-1 686 m) and 59 m (95% CIs: 0-343 m), respectively), while four days prior to the match demonstrated the highest training load (464 AU (95% CIs: 350-578), 2 983 m (95% CIs: 2 704-3 262m) and 234m (95% CIs: 0-477m), respectively). Of the five contextual factors, competition type was the only variable that demonstrated greater than trivial findings, with training before European fixtures the lowest stimulus across the four different competition types. Standard of opposition, previous result, surface type and venue had only trivial effects on training load (effect sizes = -0.13 to 0.15). Conclusion: Future studies should outline the distribution of other training metrics, including contact and collision training. This study provides a multi-club evaluation that demonstrates the variety of loading strategies prior to competitive match play and highlights competition type as the most influential contextual factor impacting the average training load

    Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections

    Get PDF
    The extraction of electron–liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections. The extraction of the elastic cross-section for neon was determined within 9% accuracy over the energy range 1–100 eV. The extension toward the simultaneous determination of elastic and ionisation cross-sections resulted in a decrease in accuracy, now to within 18% accuracy for elastic scattering and 1% for ionisation. Additional methods are explored to enhance the accuracy of the simultaneous extraction of liquid phase cross-sections

    An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    Get PDF
    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure

    The vertebral body growth plate in scoliosis: a primary disturbance of growth?

    Get PDF
    Study Design and Aims: This was an observational pilot study of the vertebral body growth plates in scoliosis involving high-resolution coronal plane magnetic resonance (MR) imaging and histological examination. One aim of this study was to determine whether vertebral body growth plates in scoliosis demonstrated abnormalities on MR imaging. A second aim was to determine if a relationship existed between MR and histological abnormalities in these vertebral body growth plates. Methods: MR imaging sequences of 18 patients demonstrated the vertebralbody growth plates well enough to detect gross abnormalities/ deficient areas/zones. Histological examination of ten vertebral body growth plates removed during routine scoliosis surgery was performed. Observational histological comparison with MR images was possible in four cases. Results: Four of the 18 MR images demonstrated spines with normal curvature and normal vertebral body growth plates. In 13 scoliotic spines, convex and concave side growth plate deficiencies were observed most frequently at or near the apex of the curve. One MR image demonstrated a 55° kyphosis and no convex or concave side deficiencies. The degree of vertebral body wedging was independent of the presence of vertebral body growth plate deficiency. Histological abnormalities of the vertebral body growth plates were demonstrated in four with MR imaging abnormalities. Conclusion: This study demonstrated MR image abnormalities of scoliotic vertebral body growth plates compared to controls. A qualitative relationship was demonstrated between MR imaging and histological abnormalities. The finding that vertebral body growth plate deficiencies occurred both on the convex and concave sides of the spine, closest to the apical vertebra of the scoliosis curve, implied that they are less likely to be the result of adaptive changes to the physical forces involved in the scoliotic deformity. One explanation is that they represent a primary disturbance of growth

    Control of PTH secretion by the TRPC1 ion channel

    Get PDF
    Familial Hypocalciuric Hypercalcemia (FHH) is a genetic condition associated with hypocalciuria, hypercalcemia and in some cases inappropriately high levels of circulating parathyroid hormone (PTH). FHH is associated with inactivating mutations in CaSR encoding the Ca2+ sensing receptor (CaSR), a G protein coupled receptor (GPCR) and GNA11 encoding G protein subunit alpha 11 (Gα11), implicating defective GPCR signaling as the root pathophysiology for FHH. However, the downstream mechanism by which CaSR activation inhibits PTH production/secretion is incompletely understood. Here, we show that mice lacking the transient receptor potential canonical channel 1 (TRPC1) develop chronic hypercalcemia, hypocalciuria, and elevated PTH levels mimicking human FHH. Ex vivo and in vitro studies reveal that TRPC1 serves a necessary and sufficient mediator to suppress PTH secretion from parathyroid glands (PTG) downstream of CaSR in response to high extracellular Ca2+ concentration. Gα11 physically interacts with both the N- and C-termini of TRPC1 and enhances CaSR-induced TRPC1 activity in transfected cells. These data identify TRPC1-mediated Ca2+ signaling as an essential component of the cellular apparatus controlling PTH secretion in the PTG downstream of CaSR
    corecore