105 research outputs found
Simulating the Feasibility of Using Liquid Micro-Jets for Determining ElectronâLiquid Scattering Cross-Sections
The extraction of electronâliquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections. The extraction of the elastic cross-section for neon was determined within 9% accuracy over the energy range 1â100 eV. The extension toward the simultaneous determination of elastic and ionisation cross-sections resulted in a decrease in accuracy, now to within 18% accuracy for elastic scattering and 1% for ionisation. Additional methods are explored to enhance the accuracy of the simultaneous extraction of liquid phase cross-sections
Applied Sport Science for Male Age-Grade Rugby Union in England
Rugby union (RU) is a skill-collision team sport played at junior and senior levels worldwide. Within England, age-grade rugby governs the participation and talent development of youth players. The RU player development pathway has recently been questioned, regarding player performance and well-being, which sport science research can address. The purpose of this review was to summarise and critically appraise the literature in relation to the applied sport science of male age-grade RU players in England focussing upon (1) match-play characteristics, (2) training exposures, (3) physical qualities, (4) fatigue and recovery, (5) nutrition, (6) psychological challenges and development, and (7) injury. Current research evidence suggests that age, playing level and position influence the match-play characteristics of age-grade RU. Training exposures of players are described as 'organised chaos' due to the multiple environments and stakeholders involved in coordinating training schedules. Fatigue is apparent up to 72 h post match-play. Well-developed physical qualities are important for player development and injury risk reduction. The nutritional requirements are high due to the energetic costs of collisions. Concerns around the psychological characteristics have also been identified (e.g. perfectionism). Injury risk is an important consideration with prevention strategies available. This review highlights the important multi-disciplinary aspects of sport science for developing age-grade RU players for continued participation and player development. The review describes where some current practices may not be optimal, provides a framework to assist practitioners to effectively prepare age-grade players for the holistic demands of youth RU and considers areas for future research
Information theory analysis of Australian humpback whale song
Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). âInformation entropy of humpback whale song,â J. Acoust. Soc. Am. 119, 1849â1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). âSongs of humpback whales,â Science 173, 587â597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976â1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs
Vivid visual mental imagery in the absence of the primary visual cortex
The role of the primary visual cortex in visual mental imagery has provided significant debate in the imagery literature. Functional neuroimaging studies show considerable variation depending on task and technique. Patient studies can be difficult to interpret due to the diverse nature of cortical damage. The type of cortical damage in patient SBR is exceedingly rare as it is restricted to the gray matter of the calcarine sulcus. In this study, we show that in spite of his near-complete cortical blindness, SBR exhibits vivid visual mental imagery both behaviorally and when measured with functional magnetic resonance imaging. The pattern of cortical activation to visual mental imagery in SBR is indistinguishable from individual sighted subjects, in contrast to the visual perceptual responses, which are greatly attenuated
Search for pentaquark in high statistics measurement of at CLAS
The exclusive reaction was studied in the
photon energy range between 1.6-3.8 GeV searching for evidence of the exotic
baryon . The decay to requires the assignment of
strangeness to any observed resonance. Data were collected with the CLAS
detector at the Thomas Jefferson National Accelerator Facility corresponding to
an integrated luminosity of 70 . No evidence for the
pentaquark was found. Upper limits were set on the production cross section as
function of center-of-mass angle and mass. The 95% CL upper limit on the
total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter
A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region
The neutron elastic magnetic form factor GMn has been extracted from
quasielastic electron scattering data on deuterium with the CEBAF Large
Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the
measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was
achieved by employing a ratio technique in which many uncertainties cancel, and
by a simultaneous in-situ calibration of the neutron detection efficiency, the
largest correction to the data. Neutrons were detected using the CLAS
electromagnetic calorimeters and the time-of-flight scintillators. Data were
taken at two different electron beam energies, allowing up to four
semi-independent measurements of GMn to be made at each value of Q2. The dipole
parameterization is found to provide a good description of the data over the
measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters,
Revised version has changes recommended by journal referee
Electroproduction of mesons at GeV measured with the CLAS spectrometer
Electroproduction of exclusive vector mesons has been studied with the
CLAS detector in the kinematical range GeV,
GeV, and GeV. The
scaling exponent for the total cross section as was
determined to be . The slope of the four-momentum transfer
distribution is GeV. Under the assumption of
s-channel helicity conservation (SCHC), we determine the ratio of longitudinal
to transverse cross sections to be . A 2-gluon exchange model
is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
Search for the pentaquark in the reaction
A search for the \thp in the reaction was completed
using the CLAS detector at Jefferson Lab. A study of the same reaction,
published earlier, reported the observation of a narrow \thp resonance. The
present experiment, with more than 30 times the integrated luminosity of our
earlier measurement, does not show any evidence for a narrow pentaquark
resonance. The angle-integrated upper limit on \thp production in the mass
range of 1.52 to 1.56 GeV/c for the reaction is
0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and
angular distribution of \thp production. Using \lamstar production as an
empirical measure of rescattering in the deuteron, the cross section upper
limit for the elementary reaction is estimated to be
a factor of 10 higher, {\it i.e.}, nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
- âŠ