91 research outputs found

    Airframe Noise Results from the QTD II Flight Test Program

    Get PDF
    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty)

    Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles

    Get PDF
    Jet-flap interaction (JFI) noise can become an important component of far field noise when a flap is immersed in the engine propulsive stream or is in its entrained region, as in approach conditions for under-the-wing engine configurations. We experimentally study the effect of modifying the flaperon, which is a high speed aileron between the inboard and outboard flaps, at both approach and take-off conditions using scaled models in a free jet. The flaperon modifications were of two types: sawtooth trailing edge and mini vortex generators (vg s). Parametric variations of these two concepts were tested with a round coaxial nozzle and an advanced chevron nozzle, with azimuthally varying fan chevrons, using both far field microphone arrays and phased microphone arrays for source diagnostics purposes. In general, the phased array results corroborated the far field results in the upstream quadrant pointing to JFI near the flaperon trailing edge as the origin of the far field noise changes. Specific sawtooth trailing edges in conjunction with the round nozzle gave marginal reduction in JFI noise at approach, and parallel co-rotating mini-vg s were somewhat more beneficial over a wider range of angles, but both concepts were noisier at take-off conditions. These two concepts had generally an adverse JFI effect when used in conjunction with the advanced chevron nozzle at both approach and take-off conditions

    Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy

    Full text link
    Purpose: To enhance an in-house graphic-processing-unit (GPU) accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and Materials: A block aperture module was integrated into VPMC. VPMC was validated by an opensource code, MCsquare, in eight water phantom simulations with 3cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45mm water equivalent thickness. VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 cc). Finally, 3 patients were selected for robust optimization with aperture blocks using VPMC. Results: In the water phantoms, 3D gamma passing rate (2%/2mm/10%) between VPMC and MCsquare were 99.71±\pm0.23%. In the patient geometries, 3D gamma passing rates (3%/2mm/10%) between VPMC/MCsquare and RayStation MC were 97.79±\pm2.21%/97.78±\pm1.97%, respectively. The calculation time was greatly decreased from 112.45±\pm114.08 seconds (MCsquare) to 8.20±\pm6.42 seconds (VPMC), both having statistical uncertainties of about 0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 seconds. Conclusion: VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.Comment: 3 tables, 3 figure

    The Impact of Advocacy Organizations on Low-Income Housing Policy in U.S. Cities

    Get PDF
    Financial support for affordable housing competes with many other municipal priorities. This work seeks to explain the variation in support for affordable housing among U.S. cities with populations of 100,000 or more. Using multivariate statistical analysis, this research investigates political explanations for the level of city expenditures on housing and community with a particular interest in the influence of housing advocacy organizations (AOs). Data for the model were gathered from secondary sources, including the U.S. Census and the National Center for Charitable Statistics. Among other results, the analysis indicates that, on average, the political maturity of AOs has a statistically significant, positive effect on local housing and community development expenditures

    Immediate versus postponed intervention for infected necrotizing pancreatitis

    Get PDF
    BACKGROUND Infected necrotizing pancreatitis is a potentially lethal disease that is treated with the use of a step-up approach, with catheter drainage often delayed until the infected necrosis is encapsulated. Whether outcomes could be improved by earlier catheter drainage is unknown. METHODS We conducted a multicenter, randomized superiority trial involving patients with infected necrotizing pancreatitis, in which we compared immediate drainage within 24 hours after randomization once infected necrosis was diagnosed with drainage that was postponed until the stage of walled-off necrosis was reached. The primary end point was the score on the Comprehensive Complication Index, which incorporates all complications over the course of 6 months of follow-up. RESULTS A total of 104 patients were randomly assigned to immediate drainage (55 patients) or postponed drainage (49 patients). The mean score on the Comprehensive Complication Index (scores range from 0 to 100, with higher scores indicating more severe complications) was 57 in the immediate-drainage group and 58 in the postponed-drainage group (mean difference, −1; 95% confidence interval [CI], −12 to 10; P=0.90). Mortality was 13% in the immediate-drainage group and 10% in the postponed-drainage group (relative risk, 1.25; 95% CI, 0.42 to 3.68). The mean number of interventions (catheter drainage and necrosectomy) was 4.4 in the immediate-drainage group and 2.6 in the postponed-drainage group (mean difference, 1.8; 95% CI, 0.6 to 3.0). In the postponed-drainage group, 19 patients (39%) were treated conservatively with antibiotics and did not require drainage; 17 of these patients survived. The incidence of adverse events was similar in the two groups. CONCLUSIONS This trial did not show the superiority of immediate drainage over postponed drainage with regard to complications in patients with infected necrotizing pancreatitis. Patients randomly assigned to the postponed-drainage strategy received fewer invasive interventions

    Keywords and Cultural Change: Frame Analysis of Business Model Public Talk, 1975–2000

    Full text link

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    A method to separate wind-tunnel background noise and wind noise from interior measurements

    No full text
    Ph.D.Krishan K. Ahuj
    • …
    corecore