7 research outputs found

    BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL-A Pilot Study.

    Get PDF
    (1) Introduction: BEAM is a high-dose chemotherapy (HDCT) frequently administered before autologous stem cell transplantation (ASCT) in diffuse large B-cell lymphoma (DLBCL). Bendamustine replacing BCNU (BeEAM) is similarly effective at lower toxicities. However, relapse remains the major cause of death in DLBCL. (2) Methods: This is a 12-patient pilot study of the BeEAM preparative regimen with additional polatuzumab vedotin (PV, targeting CD79b) aiming to establish feasibility and to reduce toxicity without increasing the early progression rate. PV was given once at the standard dose of 1.8 mg/kg at day -6 together with BeEAM-HDCT (days -7 to -1) before ASCT. (3) Results: 8/12 patients (67%) received PV with BeEAM as a consolidation of first-line treatment, and 4/12 patients (33%) received PV with BeEAM after relapse treatment. All patients experienced complete engraftment (neutrophils: median 11 days; platelets: 13 days). Gastrointestinal toxicities occurred in 7/12 patients (58%, grade 3). All patients developed neutropenic infections with at least one identified pathogen (bacterial: 10/12 patients; viral: 2/12; and fungal: 1/12). The complete remission rate by PET-CT 100 days post-ASCT was 92%, with one mortality due to early progression. Eleven out of twelve patients (92%) were alive without progression after a median follow-up of 15 months. (4) Conclusions: Our study with 12 patients suggests that combining PV with BeEAM HDCT is feasible and safe, but the limited cohort prevents definite conclusions regarding efficacy. Larger cohorts must be evaluated

    X-ray Nanodiffraction on a Single SiGe Quantum Dot inside a Functioning Field-Effect Transistor

    Get PDF
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor

    In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA

    No full text
    Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases.ISSN:2157-846

    In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA

    Full text link
    Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases

    In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels

    No full text
    Most known pathogenic point mutations in humans are C center dot G to T center dot A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.Base editors are effective and safe for cholesterol reduction in non-human primates.ISSN:1546-1696ISSN:1087-015

    In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels

    No full text
    Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases
    corecore