23 research outputs found

    Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women

    Get PDF
    In iron-depleted women without anemia, oral iron supplements induce an increase in serum hepcidin (SHep) that persists for 24 hours, decreasing iron absorption from supplements given later on the same or next day. Consequently, iron absorption from supplements is highest if iron is given on alternate days. Whether this dosing schedule is also beneficial in women with iron-deficiency anemia (IDA) given high-dose iron supplements is uncertain. The primary objective of this study was to assess whether, in women with IDA, alternate-day administration of 100 and 200 mg iron increases iron absorption compared to consecutive-day iron administration. Secondary objectives were to correlate iron absorption with SHep and iron status parameters. We performed a cross-over iron absorption study in women with IDA (n=19; median hemoglobin 11.5 mg/dL; mean serum ferritin 10 mg/L) who received either 100 or 200 mg iron as ferrous sulfate given at 8 AM on days 2, 3 and 5 labeled with stable iron isotopes 57Fe, 58Fe and 54Fe; after a 16-day incorporation period, the other labeled dose was given at 8 AM on days 23, 24 and 26 (days 2, 3 and 5 of the second period). Iron absorption on days 2 and 3 (consecutive) and day 5 (alternate) was assessed by measuring erythrocyte isotope incorporation. For both doses, SHep was higher on day 3 than on day 2 (

    Alternate day versus consecutive day oral iron supplementation in iron-depleted women: a randomized double-blind placebo-controlled study

    Get PDF
    Background: Guidelines to treat iron deficiency recommend daily provision of oral iron, but this may decrease fractional iron absorption and increase side effects. Our objective was to compare consecutive-day versus alternate-day iron supplementation. Methods: In a double-masked, randomized, placebo-controlled trial, young Swiss women (n = 150; serum ferritin ≤30 μg/L) were assigned to: daily 100 mg iron for 90 d, followed by daily placebo for another 90 d (consecutive-day group) or the same daily dose of iron and placebo on alternate days for 180 d (alternate-day group). The study period was 24/11/2021-10/8/2022. Co-primary outcomes, at equal total iron doses, were serum ferritin and gastrointestinal side effects; secondary outcomes were iron deficiency and serum hepcidin. Compliance and side effects were recorded daily using a mobile application. Data were analysed using mixed models and longitudinal prevalence ratios (LPR). The trial was registered at ClinicalTrials.gov (NCT05105438). Findings: 75 women were assigned to each group and included in the intention-to-treat analysis. Capsule adherence and side effect reporting was >97% in both groups. At equal total iron doses, comparing consecutive-day and alternate-day groups, median serum ferritin was 43.8 μg/L (31.7-58.2) versus 44.8 μg/L (33.8-53.6) (P = 0.98), the LPR for gastrointestinal side effects on days of iron intake was 1.56 (95% CI: 1.38, 1.77; P < 0.0001), and median serum hepcidin was 3.0 nM (IQR 2.0-5.0) versus 1.9 nM (1.4-2.9) (P < 0.0001). Iron deficiency prevalence after 3 months was 5.5% versus 4.3% (P = 0.74) and after 6 months was 11.4% and 3.0% (P = 0.049). Interpretation: At equal total iron doses, compared to consecutive day dosing of iron, alternate day dosing did not result in higher serum ferritin but reduced iron deficiency at 6 months and triggered fewer gastrointestinal side effects

    Maternal iron kinetics and maternal–fetal iron transfer in normal-weight and overweight pregnancy

    Full text link
    Background Inflammation during pregnancy may aggravate iron deficiency (ID) by increasing serum hepcidin and reducing iron absorption. This could restrict iron transfer to the fetus, increasing risk of infant ID and its adverse effects. Objectives We aimed to assess whether iron bioavailability and/or iron transfer to the fetus is impaired in overweight/obese (OW) pregnant women with adiposity-related inflammation, compared with normal-weight (NW) pregnant women. Methods In this prospective study, we followed NW (n = 43) and OW (n = 40) pregnant women who were receiving iron supplements from the 14th week of gestation to term and followed their infants to age 6 mo. We administered 57Fe and 58Fe in test meals mid-second and mid-third trimester, and measured tracer kinetics throughout pregnancy and infancy. Results In total, 38 NW and 36 OW women completed the study to pregnancy week 36, whereas 30 NW and 27 OW mother–infant pairs completed the study to 6 mo postpartum. Both groups had comparable iron status, hemoglobin, and serum hepcidin throughout pregnancy. Compared with the NW, the OW pregnant women had 1) 43% lower fractional iron absorption (FIA) in the third trimester (P = 0.033) with median [IQR] FIA of 23.9% [11.4%–35.7%] and 13.5% [10.8%–19.5%], respectively; and 2) 17% lower maternal–fetal iron transfer from the first tracer (P = 0.051) with median [IQR] maternal–fetal iron transfer of 4.8% [4.2%–5.4%] and 4.0% [3.6%–4.6%], respectively. Compared with the infants born to NW women, infants born to OW women had lower body iron stores (BIS) with median [IQR] 7.7 [6.3–8.8] and 6.6 [4.6–9.2] mg/kg body weight at age 6 mo, respectively (P = 0.024). Prepregnancy BMI was a negative predictor of maternal–fetal iron transfer (β = −0.339, SE = 0.144, P = 0.025) and infant BIS (β = −0.237, SE = 0.026, P = 0.001). Conclusions Compared with NW, OW pregnant women failed to upregulate iron absorption in late pregnancy, transferred less iron to their fetus, and their infants had lower BIS. These impairments were associated with inflammation independently of serum hepcidin

    Gut microbiome function and composition in infants from rural Kenya and association with human milk oligosaccharides

    Get PDF
    The gut microbiota evolves rapidly after birth, responding dynamically to environmental factors and playing a key role in short- and long-term health. Lifestyle and rurality have been shown to contribute to differences in the gut microbiome, including Bifidobacterium levels, between infants. We studied the composition, function and variability of the gut microbiomes of 6- to 11-month-old Kenyan infants ( n = 105). Shotgun metagenomics showed Bifidobacterium longum to be the dominant species. A pangenomic analysis of B. longum in gut metagenomes revealed a high prevalence of B. longum subsp. infantis ( B. infantis) in Kenyan infants (80%), and possible co-existence of this subspecies with B. longum subsp. longum. Stratification of the gut microbiome into community (GMC) types revealed differences in composition and functional features. GMC types with a higher prevalence of B. infantis and abundance of B. breve also had a lower pH and a lower abundance of genes encoding pathogenic features. An analysis of human milk oligosaccharides (HMOs) classified the human milk (HM) samples into four groups defined on the basis of secretor and Lewis polymorphisms revealed a higher prevalence of HM group III ( Se+, Le-) (22%) than in most previously studied populations, with an enrichment in 2'-fucosyllactose. Our results show that the gut microbiome of partially breastfed Kenyan infants over the age of six months is enriched in bacteria from the Bifidobacterium community, including B. infantis, and that the high prevalence of a specific HM group may indicate a specific HMO-gut microbiome association. This study sheds light on gut microbiome variation in an understudied population with limited exposure to modern microbiome-altering factors

    Effect of dietary factors and time of day on iron absorption from oral iron supplements in iron deficient women

    No full text
    Guidelines generally recommend taking iron supplements in the morning away from meals and with ascorbic acid (AA) to increase iron absorption. However, there is little direct evidence on the effects of dietary factors and time of day on absorption from iron supplements. In iron-depleted women (n = 34; median serum ferritin 19.4 μg/L), we administered 100 mg iron doses labeled with ⁵⁴Fe, ⁵⁷Fe, or ⁵⁸Fe in each of six different conditions with: (1) water (reference) in the morning; (2) 80 mg AA; (3) 500 mg AA; (4) coffee; (5) breakfast including coffee and orange juice (containing ~90 mg AA); and (6) water in the afternoon. Fractional iron absorption (FIA) from these n = 204 doses was calculated based on erythrocyte incorporation of multiple isotopic labels. Compared to the reference: 80 mg AA increased FIA by 30% (p < .001) but 500 mg AA did not further increase FIA (p = .226); coffee decreased FIA by 54% (p = .004); coffee with breakfast decreased FIA by 66% (p < .001) despite the presence of ~90 mg of AA. Serum hepcidin was higher (p < .001) and FIA was 37% lower (p = .059) in the afternoon compared to the morning. Our data suggest that to maximize efficacy, ferrous iron supplements should be consumed in the morning, away from meals or coffee, and with an AA-rich food or beverage. Compared to consuming a 100 mg iron dose in the morning with coffee or breakfast, consuming it with orange juice alone results in a ~ 4-fold increase in iron absorption, and provides ~20 more mg of absorbed iron per dose. The trial was registered at Clinicaltrials.gov(NCT04074707).ISSN:1096-865

    Oral iron supplementation in iron-deficient women: How much and how often?

    No full text
    Iron deficiency and iron deficiency anemia (IDA) are major public health problems worldwide, especially in young women. Oral iron supplementation can be an effective strategy to treat and prevent IDA, but guidelines vary. Some experts recommend doses of 150–200 mg elemental iron per day, with the dose split through the day. However, recent studies suggest this may not be an optimal regimen. The fraction of iron absorbed from high doses of oral iron is low, and unabsorbed iron can cause gut irritation, inflammation and dysbiosis, and these reduce compliance. In recent studies using serum hepcidin profiles and stable iron isotopes to quantify iron absorption in young women, we have shown that: (a) oral iron doses ≥60 mg in iron-deficient women, and doses ≥100 mg in women with IDA, stimulate an acute increase in hepcidin that persists 24 h after the dose, but subsides by 48 h; (b) therefore, to maximize fractional iron absorption, oral doses ≥60 mg should be given on alternate days; (c) the circadian increase in plasma hepcidin is augmented by a morning iron dose; therefore, iron doses should not be given in the afternoon or evening after a morning dose. If rate of Hb response is important, a pooled analysis of our data done for this review indicates that total iron absorption is also higher if twice the target daily iron dose is given on alternate days. In summary, these studies suggest changing from daily to alternate-day schedules and from divided to morning single doses increases iron absorption and may reduce side effects. Thus, providing morning doses of 60–120 mg iron as a ferrous salt given with ascorbic acid on alternate days may be an optimal oral dosing regimen for women with iron-deficiency and mild IDA

    Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption

    No full text
    Background Plasma ferritin is a widely used indicator to detect iron deficiency, but the threshold ferritin that defines iron deficiency remains uncertain. Our aim was to define the ferritin concentration at which the body begins to upregulate iron absorption from the diet; this could provide a functionally-defined threshold of incipient iron deficiency. We hypothesized this threshold ferritin concentration would correspond to the threshold hepcidin concentration at which iron absorption begins to increase. Methods We performed a pooled analysis of our stable iron isotope studies (n = 1058) conducted from 2006 to 2019 in healthy women (age 18–50 years; mean±SD ferritin 33.7 ± 27.1 μg/L) that measured iron absorption from labeled test meals providing physiological amounts of iron. To fit relationships between iron absorption, ferritin and hepcidin, we used generalized additive modeling, and to identify thresholds, we estimated the first derivatives of the fitted trend to assess inflection points in these relationships. Findings Hepcidin increased linearly with increasing ferritin over the entire range of ferritin values. Iron absorption began to increase below a threshold hepcidin value of 3.09 (95%CI: 2.80, 3.38) nmol/l, above which iron absorption remained stable. Iron absorption began to increase below a threshold ferritin value of 51.1 (95%CI: 49.1, 53.1) µg/l, above which iron absorption remained stable. The latter two findings were internally consistent in that, in the relationship between hepcidin and ferritin, a hepcidin of ~3 nmol/l corresponded to a ferritin of ~51 µg/l. Interpretation Based on physiological upregulation of iron absorption, a threshold ferritin of <50 µg/L, corresponding to a threshold hepcidin of <3 nmol/l, indicates incipient iron deficiency in young women

    Prediction of human iron bioavailability using rapid c-ELISAs for human plasma hepcidin

    No full text
    AbstractBackground: Hepcidin is the central systemic regulator of iron metabolism, but its quantification in biological fluids is challenging. Rapid, accurate and user-friendly methods are needed. Our aim was to assess the ability of hepcidin as measured by three different c-ELISA assays to predict iron bioavailability in humans. Methods: The three assays used were commercially available DRG and Peninsula assays and the c-ELISA method performed at Radboud University Medical Centre, Nijmegen, The Netherlands (Hepcidinanalysis.com), validated by comparative measurements with time-of-flight mass spectrometry. We analyzed plasma samples (n=37) selected to represent a broad range of hepcidin concentrations from a subgroup of healthy, iron-depleted women in a study assessing fractional absorption from iron supplements. Results: In single regressions, all three c-ELISA assays were predictors of fractional iron absorption: R2=0.363 (DRG), R2=0.281 (Peninsula) and R2=0.327 (Hepcidinanalysis.com). In multiple regressions, models including hepcidin measured with either DRG-, Peninsula or Hepcidinanalysis.com explained 55.7%, 44.5% and 52.5% of variance in fractional absorption, and hepcidin was a strong predictor of fractional absorption irrespective of the hepcidin assays used. However, we found significant differences in absolute values for hepcidin between different methods. Both the DRG assay's (y=0.61x+0.87; R2=0.873) and the Peninsula assay's measurements (y=1.88x+0.62; R2=0.770) were correlated with Hepcidinanalysis.com. Conclusions: The biological variability in plasma hepcidin, (inter-sample CV) was 5-10-fold higher for both the Peninsula and DRG assay than the analytical variably (inter-run within-sample CV) suggesting substantial discriminatory power to distinguish biological hepcidin variation. Between methods, prediction of iron bioavailability in generally healthy iron depleted subjects appears comparable

    Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants

    No full text
    Abstract Background The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. Methods Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. Results High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. Conclusions Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro
    corecore