18 research outputs found

    Neural Correlates of Duration Discrimination in Young Adults with Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder and Their Comorbid Presentation

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) often co-occur and share neurocognitive deficits. One such shared impairment is in duration discrimination. However, no studies using functional magnetic resonance imaging (fMRI) have investigated whether these duration discrimination deficits are underpinned by the same or different underlying neurofunctional processes. In this study, we used fMRI to compare the neurofunctional correlates of duration discrimination between young adult males with ASD (n = 23), ADHD (n = 25), the comorbid condition of ASD+ADHD (n = 24), and typical development (TD, n = 26) using both region of interest (ROI) and whole brain analyses. Both the ROI and the whole-brain analyses showed that the comorbid ASD+ADHD group compared to controls, and for the ROI analysis relative to the other patient groups, had significant under-activation in right inferior frontal cortex (IFG) a key region for duration discrimination that is typically under-activated in boys with ADHD. The findings show that in young adult males with pure ASD, pure ADHD and comorbid ASD+ADHD with no intellectual disability, only the comorbid group demonstrates neurofunctional deficits in a typical duration discrimination region

    Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood.

    Get PDF
    Autism spectrum disorder (ASD) is a common neurodevelopmental condition, and infant siblings of children with ASD are at a higher risk of developing autistic traits or an ASD diagnosis, when compared to those with typically developing siblings. Reports of differences in brain anatomy and function in high-risk infants which predict later autistic behaviors are emerging, but although cerebellar and subcortical brain regions have been frequently implicated in ASD, no high-risk study has examined these regions. Therefore, in this study, we compared regional MRI volumes across the whole brain in 4-6-month-old infants with (high-risk, n = 24) and without (low-risk, n = 26) a sibling with ASD. Within the high-risk group, we also examined whether any regional differences observed were associated with autistic behaviors at 36 months. We found that high-risk infants had significantly larger cerebellar and subcortical volumes at 4-6-months of age, relative to low-risk infants; and that larger volumes in high-risk infants were linked to more repetitive behaviors at 36 months. Our preliminary observations require replication in longitudinal studies of larger samples. If correct, they suggest that the early subcortex and cerebellum volumes may be predictive biomarkers for childhood repetitive behaviors. Autism Res 2019, 12: 614-627. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: Individuals with a family history of autism spectrum disorder (ASD) are at risk of ASD and related developmental difficulties. This study revealed that 4-6-month-old infants at high-risk of ASD have larger cerebellum and subcortical volumes than low-risk infants, and that larger volumes in high-risk infants are associated with more repetitive behaviors in childhood

    Birth of the blues:Emotional sound processing in infants exposed to prenatal maternal depression

    No full text
    BACKGROUND: Offspring exposed to prenatal maternal depression (PMD) are vulnerable to depression across their lifespan. The underlying cause(s) for this elevated intergenerational risk is most likely complex. However, depression is underpinned by a dysfunctional frontal-limbic network, associated with core information processing biases (e.g. attending more to sad stimuli). Aberrations in this network might mediate transmission of this vulnerability in infants exposed to PMD. In this study, we aimed to explore the association between foetal exposure to PMD and frontal-limbic network function in infancy, hypothesising that, in response to emotional sounds, infants exposed to PMD would exhibit atypical activity in these regions, relative to those not exposed to PMD. METHOD: We employed a novel functional magnetic resonance imaging sequence to compare brain function, whilst listening to emotional sounds, in 78 full-term infants (3–6 months of age) born to mothers with and without a diagnosis of PMD. RESULTS: After exclusion of 19 datasets due to infants waking up, or moving excessively, we report between-group brain activity differences, between 29 infants exposed to PMD and 29 infants not exposed to PMD, occurring in temporal, striatal, amygdala/parahippocampal and frontal regions (p < 0.005). The offspring exposed to PMD exhibited a relative increase in activation to sad sounds and reduced (or unchanged) activation to happy sounds in frontal-limbic clusters. CONCLUSIONS: Findings of a differential response to positive and negative valanced sounds by 3–6 months of age may have significant implications for our understanding of neural mechanisms that underpin the increased risk for later-life depression in this population

    Modulation of brain activation during executive functioning in autism with citalopram

    Get PDF
    Adults with autism spectrum disorder (ASD) are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). However, there is limited evidence to support this practice. Therefore, it is crucial to understand the impact of SSRIs on brain function abnormalities in ASD. It has been suggested that some core symptoms in ASD are underpinned by deficits in executive functioning (EF). Hence, we investigated the role of the SSRI citalopram on EF networks in 19 right-handed adult males with ASD and 19 controls who did not differ in gender, age, IQ or handedness. We performed pharmacological functional magnetic resonance imaging to compare brain activity during two EF tasks (of response inhibition and sustained attention) after an acute dose of 20 mg citalopram or placebo using a randomised, double-blind, crossover design. Under placebo condition, individuals with ASD had abnormal brain activation in response inhibition regions, including inferior frontal, precentral and postcentral cortices and cerebellum. During sustained attention, individuals with ASD had abnormal brain activation in middle temporal cortex and (pre)cuneus. After citalopram administration, abnormal brain activation in inferior frontal cortex was ‘normalised’ and most of the other brain functional differences were ‘abolished’. Also, within ASD, the degree of responsivity in inferior frontal and postcentral cortices to SSRI challenge was related to plasma serotonin levels. These findings suggest that citalopram can ‘normalise’ atypical brain activation during EF in ASD. Future trials should investigate whether this shift in the biology of ASD is maintained after prolonged citalopram treatment, and if peripheral measures of serotonin predict treatment response

    Does sex influence the diagnostic evaluation of autism spectrum disorder in adults?

    Get PDF
    It is unknown whether sex influences the diagnostic evaluation of autism spectrum disorder, or whether male and female adults within the spectrum have different symptom profiles. This study reports sex differences in clinical outcomes for 1244 adults (935 males and 309 females) referred for autism spectrum disorder assessment. Significantly, more males (72%) than females (66%) were diagnosed with an autism spectrum disorder of any subtype (x2 = 4.09; p = 0.04). In high-functioning autism spectrum disorder adults (IQ > 70; N = 827), there were no significant sex differences in severity of socio-communicative domain symptoms. Males had significantly more repetitive behaviours/restricted interests than females (p = 0.001, d = 0.3). A multivariate analysis of variance indicated a significant interaction between autism spectrum disorder subtype (full-autism spectrum disorder/partial-autism spectrum disorder) and sex: in full-autism spectrum disorder, males had more severe socio-communicative symptoms than females; for partial-autism spectrum disorder, the reverse was true. There were no sex differences in prevalence of co-morbid psychopathologies. Sex influenced diagnostic evaluation in a clinical sample of adults with suspected autism spectrum disorder. The sexes may present with different manifestations of the autism spectrum disorder phenotype and differences vary by diagnostic subtype. Understanding and awareness of adult female repetitive behaviours/restricted interests warrant attention and sex-specific diagnostic assessment tools may need to be considered
    corecore