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Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) often

co-occur and share neurocognitive deficits. One such shared impairment is in duration

discrimination. However, no studies using functional magnetic resonance imaging (fMRI)

have investigated whether these duration discrimination deficits are underpinned by the

same or different underlying neurofunctional processes. In this study, we used fMRI to

compare the neurofunctional correlates of duration discrimination between young adult

males with ASD (n = 23), ADHD (n = 25), the comorbid condition of ASD+ADHD

(n = 24), and typical development (TD, n = 26) using both region of interest (ROI)

and whole brain analyses. Both the ROI and the whole-brain analyses showed that the

comorbid ASD+ADHD group compared to controls, and for the ROI analysis relative to

the other patient groups, had significant under-activation in right inferior frontal cortex

(IFG) a key region for duration discrimination that is typically under-activated in boys

with ADHD. The findings show that in young adult males with pure ASD, pure ADHD

and comorbid ASD+ADHD with no intellectual disability, only the comorbid group

demonstrates neurofunctional deficits in a typical duration discrimination region.

Keywords: duration discrimination, neurodevelopment disorder, attention-deficit/hyperactivity disorder (ADHD),

autism spectrum disorder (ASD), functional magnetic resonance imaging, comorbidity, time estimation
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by difficulties
in reciprocal social communication/interaction and stereotyped
and repetitive behaviors, while attention-deficit/hyperactivity
disorder (ADHD) is characterized by age-inappropriate
symptoms of inattention, hyperactivity and impulsivity (1). Both
conditions co-occur despite their distinctive diagnostic criteria
even in adulthood [e.g., (2, 3)]. Consequently, studies have
compared the cognitive and neural correlates of these conditions,
and their comorbid presentation (i.e., ASD+ADHD), with the
intention of predicting a model of impairments for the comorbid
group in relation to the “pure” disorders (4–6).

Perceptual timing, i.e., “the ability to estimate explicitly

attended temporal intervals” (7), could be used for investigating
potentially different underlying substrates of the pure disorders
and of the comorbid disorder. People with both psychiatric
conditions are often impaired in daily functions involving timing
and time perception skills, including planning and organizing (8–
11). Impaired timing is a major pathway to ADHD (7, 12–14) and
symptoms of impulsivity, such as verbal blurting and aversion
toward delays, have been found to be correlated with impaired
time perception (14–16). Anecdotal accounts from parents and

clinicians also suggested timing problems in individuals with
ASD (17, 18), which possibly forms the basis for checking
behavior or strict adherence to routine (18, 19). Furthermore,
time perception difficulties are associated with executive function
(EF) deficits [e.g., (20–22)], which have been found to be present

in these related conditions (23, 24).
Experimental studies of time perception have consistently

reported impaired task performance in ADHD [see (7, 14, 25)].
Consistently, reports show that children and adults with ADHD
are less able to detect changes in time intervals within the
millisecond range [e.g., (26–28)] and tend to over-estimate supra-
second time intervals relative to typically developing controls (12,
29–31). Such difficulties, according to reviews and meta-analyses
of fMRI studies in people with ADHD, are related to functional
impairments in inferior frontal, inferior parietal, striatal, and
cerebellar regions (7, 32, 33). Furthermore, during discrimination
of intervals differing by several hundreds of milliseconds
specifically, ADHD boys have shown under-activation in right
dorsolateral prefrontal (DLPFC), bilateral inferior frontal gyrus
(IFG), dorsal anterior cingulate/supplementary motor area
(DACC/SMA), striatum, left inferior parietal lobe (IPL) and left
cerebellum (14, 34–38).

Experimental findings have also suggested an impairment of
time perception in people with ASD (39–44) although there are
also some negative results (45–47). Despite evidence for time
estimation deficits in ASD, no studies have tested the neural
substrates of these deficits or compared patients with ADHD and
ASD in time perception.

Several studies, however, have compared the two disorders
in other EF domains [e.g., (4, 48, 49)], which have been shown
to have some overlap in neural activations with time perception
(50). During motor inhibition, ASD-specific over-activation was
found in bilateral IFG while ADHD-specific under-activation
was observed in ventrolateral prefrontal cortex and basal

ganglia (49). Furthermore, shared under-activation of the DLPFC
was found in both disorders during sustained attention and
working memory tasks (4, 48). Interestingly, a study of temporal
discounting (6), which is closely related to timing functions
(14, 51, 52), showed weaker brain-behavior association in the
ASD+ADHD group in typical areas of temporal discounting
such as ventromedial and lateral prefrontal cortex, ventral
striatum, and anterior cingulate, indicating increased severity of
neural impairments in the comorbid than the pure disorders.

To address the gap in the literature, this study explores
the neural correlates of time discrimination in young adult
males with ASD, ADHD, and ASD+ADHD relative to age-
matched controls.Wewere particularly interested in the potential
impairments in the comorbid group compared to the pure groups
to elucidate the mechanisms underpinning the co-occurrence of
ASD and ADHD, as this information could be useful clinically
for formulating disorder-specific treatments. Based on previous
fMRI studies of time perception in ADHD, we hypothesized
functional impairments in regions previously implicated with
timing deficits in the ADHD group, i.e., in ACC/SMA, IFG,
caudate, IPL and cerebellum (14, 34–38), with similar but more
pronounced deficits in these timing regions in the comorbid
group (6), but potentially different abnormalities in the ASD
group, based on more inconsistent findings of time perception
deficits in ASD [e.g., (41, 44)].

METHODS AND MATERIALS

Participants
Participants were 107 young adults aged 20–27 years with ASD,
ADHD, ASD+ADHD, and TD and full-scale intelligent quotient
(FSIQ) ≥ 70, estimated using the Wechsler Abbreviated Scale
of Intelligence-II (WASI-II) (53). Only males were included
to increase homogeneity since ASD and ADHD are highly
prevalent among males (54, 55). There were equal proportions
of left- and right-handed participants across groups, assessed
on the Edinburgh Handedness Inventory (56). Excluded were
individuals with epilepsy, personality disorder, current substance
abuse/dependence, or lifetime history of bipolar disorder,
schizophrenia or head injury. Participants in the clinical groups
were invited from adult ASD and ADHD clinics, support
organizations, social media and an ASD epidemiological cohort
the Special Needs and Autism Project (SNAP) (57). Prescriptions
of psychostimulants or selective serotonin reuptake inhibitors
(SSRIs) were not exclusion criteria for the clinical groups,
but psychostimulants were withdrawn 48 h prior to the study.
Participants completed an investigation involving several fMRI
tasks and a neurocognitive task battery. For the present study,
nine subjects were excluded [seven due to excessive motion
(>3mm), one due to missing behavioral data caused by technical
issues and another due to incidental MRI finding]. The final
sample comprised 23 ASD, 25 ADHD, 24 ASD+ADHD, and 26
TD subjects (Table 1).

In the ASD group, 15 participants had clinical diagnoses
confirmed by consultant psychiatrists specialized in ASD (eight
with autism; seven with Asperger’s syndrome) and eight had
research diagnoses of ASD through the SNAP study [three
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TABLE 1 | Group differences in socio-demographic variables and clinical measures.

TD

(n = 26)

ASD

(n = 23)

ADHD

(n = 25)

ASD+

ADHD

(n = 24)

Group comparison Post-hoc

M SD M SD M SD M SD F/t df p

Age 23.4 1.5 23.0 0.7 23.1 1.9 22.9 1.3 0.46 3, 94 0.71 --

FSIQ 117.3 12.0 103.7 18.4 116.0 13.2 106.9 15.9 4.9 3, 94 0.003 ADHD, TD > ASD*

Handedness 66.2 69.3 68.3 63.8 65.2 66.1 51.9 71.9 0.29 3, 94 0.83 --

CAARS ADHD index (t-scores)

Self-rated 41.8 8.5 44.6 11.7 65.2 7.7 59.1 11.8 31.3 3, 94 <0.001 ADHD, ASD+ADHD > ASD***; TD***

Informant-rated -- -- 48.8 7.2 60.4 16.5 64.5 17.4 7.3 2, 69 <0.001 ADHD, ASD+ADHD > ASD*

SDQ17+ Hyperactivity/Inattention (raw scores)

Self-rated 2.4 1.8 3.4 2.2 7.4 1.5 6.9 2.1 42.8 3, 86 <0.001 ADHD, ASD+ADHD > ASD***, TD***

Informant-rated -- -- 3.1 1.9 7.4 2.0 7.1 1.7 38.1 2, 66 <0.001 ASD+ADHD, ADHD > ASD***

ADHD symptom counts(a)

Inattention -- -- -- -- 8.2 1.3 7.5 1.1 −1.5 1, 40 0.13 --

Hyperactivity/impulsivity -- -- -- -- 5.1 2.6 4.6 2.8 −1.4 1, 40 0.68 --

Total SRS-2 (t-scores)

Self-rated 48.5 6.1 61.3 8.9 62.7 6.9 66.7 12.2 20.6 3, 93 <0.001 ASD, ADHD, ASD+ADHD > TD***

Informant-rated -- -- 63.8 8.6 56.9 10.5 69.9 11.6 9.4 2, 67 <0.001 ASD+ADHD > ADHD***; ASD > ADHD*

ADOS-2 Module 4(b)

Communication -- -- 1.8 2.0 -- -- 2.1 2.3 −0.44 1, 37 0.66 --

Social interaction -- -- 3.3 2.7 -- -- 4.0 3.9 −0.65 1, 37 0.52 --

Communication + social interaction -- -- 5.4 4.1 -- -- 6.1 6.0 −0.61 1, 37 0.55 --

Stereotyped behaviors and restricted interest -- -- 0.3 0.9 -- -- 1.0 1.3 −1.9 1, 37 0.07 --

TD, Typical development; ASD, Autism Spectrum Disorder; ADHD, Attention Deficit and Hyperactivity Disorder; M, mean; SD, standard deviation; FSIQ, full-scale intelligence quotient;

CAARS, Conners Adult ADHD Rating Scale; SRS-2, Social Responsiveness Scale version 2; SDQ17+, Strengths and Difficulties Questionnaires for adults. (a)Current ADHD symptom

counts were based on the Diagnostic Interview for Adult ADHD (DIVA 2.0) or the Young Adult Psychiatric Assessment (YAPA), available in 18 participants with ADHD and 16 participants

with ASD+ADHD. (b)Current ADOS-2 scores were available in a subset of 18 individuals with ASD and 14 participants with ASD+ADHD. Post-hoc significant threshold: *p < 0.05,

***p < 0.001.

with autism; four with atypical autism, one with pervasive
developmental disorder (PDD) unspecified], according to the
International Classification of Diseases (ICD-10) criteria (58).
Twenty-two ASD diagnoses were supported by gold-standard
research instruments, the Autism Diagnostic Observation
Schedule (ADOS) (59); three were accompanied by parent
interviews on the Autism Diagnostic Interview-Revised (ADI-
R) (60). Ten participants met the current cut-off criteria for
ASD on at least one of these measures. One participant without
ADOS or ADI-R report received childhood ASD diagnosis from a
consultant psychiatrist in a specialist neurodevelopmental clinic
supported by an assessment on the Diagnostic Interview for
Social and Communication Disorders (DISCO) (61) but had no
current scores.

All pure ADHD participants met the current DSM5
diagnostic criteria for ADHD, fifteen with combined, nine
with predominantly inattentive and one with predominantly
hyperactive presentation, diagnosed by consultant psychiatrists
in specialist adult ADHD clinics. Twenty-two diagnoses were
supported by the Diagnostic Interview for Adult ADHD
(DIVA 2.0) (62) and three by the Conners’ Adult ADHD
Diagnostic Interview for DSM-IV (CAADID) or other type
of psychiatric interviews (no current scores) (63). Symptoms

of ADHD are reported on Table 2. Five participants were
prescribed psychostimulants (four methylphenidate [MPH], one
lisdexamphetamine), two SSRIs (sertraline, escitalopram) and
one both (MPH, sertraline).

In the ASD+ADHD group, eighteen participants had clinical
ASD diagnoses (five with autism; eleven with Asperger’s
syndrome; two with atypical autism) and six had research
diagnoses through SNAP [four with atypical autism, two with
PDD unspecified], based on the ICD-10 criteria. Twenty-one
diagnoses were supported by the ADOS and/or the ADI-R.
Eleven met the current cut-off criteria for ASD on at least one of
these measures. Three without ADOS or ADI-R reports received
childhood ASD diagnoses from consultant psychiatrists in a
specialist neurodevelopmental clinic supported by the DISCO
(no current scores). Fifteen had clinical DSM5 ADHD diagnoses,
11 of which were supported by current scores of DIVA 2.0, four
clinical diagnoses were supported assessment on the CAADID
or other psychiatric interview methods (no current scores).
Nine participants had a significant history of ADHD symptoms
assessed through SNAP (three of whom had clinical diagnosis of
ADHD) and met current ADHD DSM5 criteria on the Young
Adult Psychiatric Assessment (YAPA) (64). Sixteen met the
criteria for combined and eight for inattentive DSM5 ADHD
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TABLE 2 | Behavioral measures of the duration discrimination task across groups.

TD

(n = 26)

ASD

(n = 23)

ADHD

(n = 25)

ASD+ADHD

(n = 24)

% Mean error DD (SD) 21.7 (10.6) 23.3 (15.7) 23.0 (14.2) 28.0 (13.4)

% Mean error TOJ (SD) 15.3 (12.7) 18.7 (6.0) 19.0 (13.3) 17.3 (14.3)

Mean RT DD (SD) 591.3 (115.3) 560.1 (175.3) 618.1 (159.3) 572.3 (135.5)

Mean RT TOJ (SD) 426.4 (91.4) 402.4 (118.5) 437.5 (146.4) 427.4 (106.9)

SDRT DD (SD) 203.9 (72.7) 192.3 (90.0) 220.6 (86.7) 224.9 (101.9)

SDRT TOJ (SD) 141.3 (74.2) 122.4 (63.2) 158.5 (80.2) 183.2 (91.2)

Comparison of measures during the duration discrimination task indicated no difference

across groups in performance in accuracy, MRT, and SDRT. The MRT and SDRT are in

seconds, whereas accuracy is presented as raw number where the maximum was 30.

MRT, Mean response time; SDRT, standard deviation of response time, a measure of

response time variability and SD, standard deviation.

subtype. Six were prescribed psychostimulant (five MPH, one
dexamphetamine), two SSRIs (sertraline, escitalopram) and one
both (MPH, sertraline).

The TD participants were from local communities, had no
psychiatric disorders, were medication-free and scored below
clinical cut-off for ADHD and ASD traits on the Conners’ Adult
ADHDRating Scale (CAARS) (65) and the Social Responsiveness
Scale-2 (SRS-2) (66). This study was in accordance of the
Declaration of Helsinki and received ethical approval from
a local National Health Service Research Ethics Committee
(13/LO/0373). Each participant gave written informed consent
and was given £50 for their time.

Clinical Measures
ADHD traits were measured using the ADHD index on the
CAARS and the hyperactive/impulsive and inattention domain
on the Strengths and Difficulties Questionnaires for adults
(SDQ17+; provided by Professor Robert Goodman at the
IoPPN). Autistic traits were indexed using the total SRS-2 score.
All participants completed self-report measures, corroborated
by informants (parents/partner/siblings) for those in the clinical
groups.

Time Discrimination Task
This block-design time discrimination task (14, 34–37, 67)
consisted of ten 30-s blocks, alternating between duration
discrimination (DD) and temporal order judgment (TOJ) blocks.
During the DD block, the participants indicated which circle
stayed for a longer time on the screen. In the TOJ block, the
participants indicated the circle that was shown second. Each
block began with a 3-s cue. The cue “2” signaled the start
of the TOJ block while “L” signaled the DD block (Figure 1).
Each block consisted of six trials. In each trial, a pair of circles
(green and red) appeared sequentially on the left- and right-
hand side of the screen and equal number of trials started
from the left and the right side first. Each block consisted of
two trials comparing a 1,000-ms standard interval against a
1,300-, 1,400-, or 1,500-ms test duration, followed by a 2100-
ms response period. Participants responded as soon as the
second circle was presented. Discrimination errors were the

primary outcome measures while mean response time (MRT)
and standard deviation of response time (SDRT) were secondary
measures. Higher values in these variables reflect increased
impairments.

fMRI Data Acquisition and Analyses
Neuroimaging data were acquired on a General Electric
MR750 3T scanner (Boston, MA, USA) at King’s College
London. The scanner’s body coil was used for RF transmission
while an 8-channel head coil was used for signal reception.
The echo planar image (EPI) gradient-echo pulse sequence
(TR/TE = 2,000/30ms, flip angle = 75◦, FOV = 21 ×

21 cm, 64 × 64 matrix, in-plane resolution = 3mm, slice
thickness/gap= 3.0/0.3mm) was used to acquire 41 consecutive,
top-to-bottom, slices of T2∗-weighted MR images parallel to
the inter-commissural plane covering the entire brain. The 5-
min scan produced 153 volumes in time series. A whole-brain
high resolution structural T1-weighted scan (Sagittal ADNI Go/2
ACC SPGR) was acquired in the inter-commissural plane with
TR/TE= 7.312/3.016 s, 196 slices, FOV= 27× 27 cm, 256× 256
matrix and slice thickness of 1.2mm.

Each participant’s echo-planar imaging (EPI) data were
slice-time corrected, realigned, co-registered to the individual’s
structural T1-weighted scan, segmented, normalized to the
Montreal Neurological Institute (MNI) EPI template and
smoothed with an 8-mm Gaussian kernel. Statistical analyses
were completed in two steps on the Statistical Parametric
Mapping (SPM8). At the subject-level, BOLD response was
predicted using a vector of onsets and durations convolved with
the canonical hemodynamic response function. Six nuisance
motion regressors (x-, y-, z-translations and rotations) and
separate regressors for each spike (>1mm) controlled the effects
of volume-to-volume head motion and abrupt movements.
A high-pass filter (128 s) was applied and a first-order
autoregressive model corrected the time series correlation.
The contrast DD > TOJ indexed neural correlates of time
processing.

Within-group activations (reported in Supplement) were
analyzed at the second-level analysis with a cluster extent
threshold of p < 0.05, family-wise error corrected (FWEcor) and
a voxel threshold of p < 0.001. Between-group activations were
analyzed using univariate ANCOVA with group as independent
factor, covarying total frame-wise head displacement, in spherical
region of interests (ROIs, 10-mm radius) associated with
perceptual timing in the general population, drawn from a
meta-analysis (68), in the bilateral IFG, SMA, left putamen, left
pre-central gyrus, right middle temporal gyrus, right DLPFC,
right cingulate gyrus, left insula, and left supramarginal gyrus.
The influence of IQ alone on the findings was investigated
by adding FSIQ as covariate. To examine the influence of
current medication alone, medication status (0 = medicated
or 1 = non-medicated) was added in the initial model as
covariate. The influence of both medication status and IQ on the
group difference findings was assessed by adding both factors as
covariates. Additionally, a sensitivity analysis was carried out in
participants with no psychotropic medication (22 TD, 21 ASD, 18
ADHD, and 17 ASD+ADHD). BOLD activations were extracted
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FIGURE 1 | The time discrimination task. This figure illustrates the temporal order judgement and duration discrimination blocks within the task. In this task, pairs of

circles (red and green) are presented sequentially. Each temporal order judgment block begins with a screen showing the number “2.” In this block, participants are

required to identify the circle that appears at later time between the pairs. Each duration discrimination block starts after the letter “L” is displayed instead. The

participants are required to identify the circle that appears for longer duration between the pairs.

from the clusters using the MarsBaR toolbox (69) for post-hoc
pairwise comparisons and further correlational analyses. Finally,
to explore neural impairments across groups that are non-specific
to ADHD, we conducted a whole-brain ANOVA analysis with
Group as predictor and whole-brain t-contrasts between each
clinical group against the TD controls (cluster extent threshold
of p < 0.05 FWEcor and voxel threshold of p < 0.001).

Statistical Analyses
Phenotypic, behavioral, and extracted BOLD data were analyzed
using IBM SPSS Statistics 22 (IBM Corp., 2013). Demographic
data and phenotypic reports were analyzed using univariate
ANOVAs. Task performance measures (Errors, MRT, and
SDRT) were analyzed using a 4 × 2 mixed-design ANOVA
(Group × Condition), prior which error rates were square-
rooted to normalize their distribution post-hoc pairwise multiple
comparisons were corrected with the Tukey-Kramer method.
Correlations between BOLD activations and task performance or
phenotypic traits were conducted per group.

RESULTS

Participant Characteristics
Groups did not differ in age or handedness, but in FSIQ
[F(3, 94) = 4.9, p = 0.003], which was higher in the ADHD
(p = 0.012), TD groups (p = 0.033) and, at trend level, the
ASD+ADHD (p = 0.089) relative to the ASD group. Groups
differed in self-rated ADHD index [F(3, 94) = 31.3, p< 0.001], the
SDQ score [F(3, 94) = 42.8, p < 0.001] and the informant-rated
scores for these measures [F(3, 94) = 7.3–38.1, ps < 0.001], with

post-hoc t-tests indicating higher ADHD symptoms in the ADHD
and ASD+ADHD groups than the TD (ps < 0.001) and the ASD
groups (ps < 0.001) according to the young adults, which was
corroborated by informant-ratings. Self-reported autistic traits
were higher in all clinical groups [F(3, 94) = 20.6, p <0.001]
than controls (all ps <0.001), although informant-rated ASD
traits [F(3, 94) = 9.4, p < 0.001) were significantly higher in
the ASD+ADHD (p < 0.001) and, at trend-level, in the ASD
(p= 0.064) relative to the ADHD group.

Performance Results
Errors, MRT and SDRT were greater during DD than TOJ
[Fs(1, 94) ≥ 26.1, ps < 0.001] but no main Group effect [Fs(3, 94) ≤
1.90, ps≥ 0.14] or Group× Condition interaction effect [Fs(3, 94)
≤0.67, ps ≥ 0.67] were observed.

Neuroimaging Results
Motion

Group difference in the total volume-to-volume head movement
in the x-, y-, and z- rotation and translation was significant
[F(3, 94) = 2.65, p = 0.05] and was covaried in the second-level
analysis.

Within-Group Brain Activations

The TD group showed activation in right IFC/anterior insula
(AI; BA47/13/44/45/46), reaching into the striatum/thalamus;
frontally to the dlPFC (BA10/9) and pre-central gyrus (pre-CG;
BA6) and medially to the mid-cingulate gyrus/mPFC/SMA
(BA32). Activations were also observed in left IFC/AI
(BA47/13), reaching into striatum/pallidum; in bilateral
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IPL/supramarginal/angular gyri (BA40) and left posterior
cerebellum. In ASD, clusters of activations were less extensive
than in TD although mostly overlapping, including right IFC/AI
(BA44/45/46/13), dlPFC (BA6), mid-cingulate gyrus/SMA
(BA32), and premotor and superior frontal gyrus (SFG;
BA10). Also included were left IFC/AI (BA45/13), right
IPL/supramarginal/angular gyri (BA40), and left cerebellum,
and left pre-CG (BA6). Participants with ADHD showed smaller
clusters than the TD and ASD groups in right IFC/dlPFC
(BA44/45/46/9/8) reaching into pre-CG (BA6), in left posterior
cerebellum extending to right cerebellar lobe, in cingulate gyrus
reaching to mPFC/SMA areas (BA24/32/6), and in left IFC/pre-
CG (BA44/45/6). The clusters in the ASD+ADHD group were
the least extensive and found in mPFC/SMA (BA24/32/6),
bilateral AI/IFC (BA13/47/45), reaching into caudate/putamen
on the right hemisphere (see Figure 2).

Between-Group Brain Activations

In the ROIs typically activated during perceptual timing, a
group effect was observed in a right IFG cluster [p = 0.049,
F = 5.5, (10, 12, 46), kE = 56 voxels] (see Figure 3), with
post-hoc comparisons showing that the ASD+ADHD group had
less activation than the other groups (ps ≤ 0.024). Covarying
for IQ reduced the group effect to a trend level [p = 0.09,
F = 4.8, (10, 12, 46), kE = 18 voxels], preserving the pairwise
difference between the ASD+ADHD and the TD or ASD (ps
≤ 0.027), but not the ADHD group (p = 0.08). Group effect
findings in right IFG cluster were maintained when medication
status alone [p = 0.019, F = 6.5, (10, 12, 48), kE = 235
voxels], and when both medication status and IQ were covaried
[p = 0.039, F = 5.8, (10, 12, 48), kE = 137 voxels] and the post-
hoc pairwise analyses consistently showed reduced activation in
the ASD+ADHD relative to other groups (ps ≤ 0.040) in this
cluster. Sensitivity analyses excluding participants on medication
showed the same group effect [p = 0.036, F = 6.0, (10, 12,
52), kE = 49 voxels]. However, post-hoc t-tests showed reduced
activation in the ASD+ADHD group relative to the TD and
ASD (ps ≤ 0.008) but not the ADHD group (p =0.51). No other
significant pairwise differences were observed. The right IFG
activation cluster correlated negatively with SDRT in the TD [rTD
(26) = −0.43; p = 0.03]; but not the clinical groups (|rs| ≤ 0.18;
p ≥ 0.38).

Whole-brain analyses revealed under-activation in right
IFG/DLPFC cluster in the ASD+ADHD relative to the TD group
[p =0.033, t = 4.2, (8, 32, 36), kE = 440], which was preserved
when medication status was covaried [p = 0.002, t = 4.5, (10,
10, 48), kE = 864 voxels] but did not survive after covarying
for IQ, after covarying for both medication status and IQ, or
in the sensitivity analysis excluding those who were prescribed
medication. No other comparisons between the clinical and TD
groups yielded significant differences.

DISCUSSION

The study was aimed at elucidating the similarities and
differences in the neural correlates of duration discrimination
in young adult males with ASD, ADHD, and ASD+ADHD.

The groups had comparable task performance. However, people
with ASD+ADHD had under-activation in right IFG relative
to the clinical and TD groups in ROIs most consistently
activated during time perception (68). In support of this
finding, under-activation in right IFG/DLPFC was found
only in the ASD+ADHD group relative to TD controls in
the exploratory whole-brain analyses. This suggests that in
adulthood, only people with ASD+ADHD, but not the pure
disorders are impaired in the key region that mediates time
discrimination.

The lack of neurofunctional impairment in the ADHD group
is not in line with the hypothesized under-activation in right IFG
based on reports in adolescents with ADHD during the same task
(14, 33–38), which could have several possible explanations. First,
previous reports have examined adolescents rather than adults
with ADHD. Thus, it is possible that adults with ADHDno longer
demonstrate the lateral frontal functional deficits related to time
perception observed at younger ages, as has also been shown
during response inhibition in adults with ADHD compared to
typically developing adults in some previous studies (70–72).
Second, compared to previous studies of timing (14, 34–38), the
ADHD participants in this study had above-average IQ, which
might have moderated time-processing related neural activation
deficits, since covarying for IQ reduced the statistical significance
of the difference in right IFG activation between the ADHD
and the ASD+ADHD group to trend level. Third and most
importantly, the lack of neurofunctional abnormalities in the
ADHD relative to the TD group could be related to current
psychotropic medication prescription in the sample. A sensitivity
analysis excluding participants with psychotropic medication
(mostly psychostimulants) revealed that the difference between
the ASD+ADHD and ADHD groups was no longer significant,
suggesting a subtle subthreshold abnormality that may still have
been present in the non-medicated ADHD group. This is in line
with the typical observation of right IFG under-activation during
duration discrimination in medication-naïve ADHD children
(14, 34–36), and the findings of an association between single-
dose and long-term psychostimulant administration with the
upregulation and normalization of right IFG under-activation
during timing and other tasks in ADHD children (14, 35,
36, 73–76). This interpretation should, however, be taken
with caution as an analysis covarying for medication retained
the right IFG under-activation finding in the ASD+ADHD
relative to the ASD, ADHD, and TD, which did not differ
from one another, suggesting that the exclusion of medicated
participants during the sensitivity analyses may have led to
reduced power.

The lack of neural impairments in the ASD group was not in
line with the initial hypothesis, which, in the absence of fMRI
studies of timing in ASD, was formulated based on behavioral
findings only [e.g., (39, 42)]. However, negative neurobehavioral
findings from some studies (45–47), including a recent study
in adults with ASD (77), have suggested heterogeneity in
timing impairments in this population. Therefore, although the
implication of the present neurofunctional finding is that timing
networks in young adults with ASDwithout intellectual disability
are unimpaired, this must be taken mindful of factors that could
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FIGURE 2 | Within-group brain activation clusters contrasting the block duration discrimination vs. temporal order judgement in the (A) TD, (B) ASD, (C) ADHD, and

(D) ASD+ADHD groups.

have increased the participants’ heterogeneity in the study. First,
participants in the ASD and ASD+ADHD group in this study
had varying presentations (autism, Aspergers, atypical autism,
PDD unspecified), which could be associated with heterogeneous
neural impairments [see (78, 79)]. Second, a sizeable number of
people with ASD in this study are community-sampled and may
have less severe impairment than individuals who are clinically
referred (80). This is supported by the fact that among those
who had current ADOS or ADI-R, only approximately half
the participants in the ASD and the ASD+ADHD groups met
the clinical cut-off criteria on either measure. Time perception
network abnormalities may thus be present in clinically referred
children and adults with ASD. Another consideration is the
known relationship between time perception and a number
of other EF domains such as inhibition (20, 22), working
memory and sustained attention (81–83). Meta-analytic findings

suggest that these different cognitive functions are subserved by
overlapping regions (50). It is hence possible that poor behavioral
performance during time perception tasks found in boys and
adult males with ASD in previous studies was mediated by a
variety of individually specific deficits in neural networks for
other EF domains (4, 6, 48, 49) rather than those subserving time
perception per se.

The novel finding of right IFG under-activation in the
ASD+ADHD group during DD in the ROI and the whole-
brain analyses indicate that the addition of ADHD symptoms in
adults with ASD lead to increased neurofunctional impairments
during DD. This interpretation extends, in the domain of time
perception, a previous finding by Chantiluke et al. (6) based
on weaker brain-behavior associations in the comorbid group
relative to the pure groups in brain regions associated with
temporal reward discounting. Since adults with ASD+ADHD
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FIGURE 3 | Between-group effects of duration discrimination vs. temporal order judgement. (A) Significant right IFG cluster where Group effect was found. (B)

Average BOLD signal by group is displayed (i) for all data, (ii) after covarying for IQ and (iii) covarying for medication. (C) Correlation between BOLD and SDRT by

group indicates that reduced BOLD is associated with increased in SDRT. *p < 0.05, **p < 0.01.

had similar neural impairments as ADHD boys, which are
no longer observed in the ADHD adult group, the findings
could also indicate more persistent impairments in the
comorbid relative to the pure ADHD group. This hypothesis
could be further explored by replicating the study involving
participants with a wider age range including adolescents and
adults.

Analyses of behavioral measures suggest comparable task
performance across all participant groups, which was unexpected
in people with ADHD where duration discrimination deficits
have been reported [e.g., (7, 26–28)]. However, tasks typically lose
behavioral sensitivity when adapted for fMRI studies (84, 85),
and the recommended sample size for fMRI studies of over
20 (86) may not be sufficiently powered for detecting group
differences in behavioral performance on fMRI tasks. In fact, not
all findings of neural impairments were accompanied by task
performance deficits in ADHD children compared to healthy
controls in previous studies of duration discrimination (37,
38). However, a brain-behavior association between increased
right IFG activation and reduced response time variability
(SDRT) was found in the typically developing group, underlining
the importance of this region for task performance in the

healthy population. Increased intra-subject SDRT is an indicator
of attentional lapses during cognitive tasks (87, 88) which,
during DD, disturbs the perception of the passage of time
(89). Thus, increased activation in right IFG in the control
group may also reflect better attentional control during time
perception.

A strength of the study is the robust characterization of
diagnoses of ASD and ADHD in the majority of patients,
including the use of ICD-10, DSM5, ADI-R, ADOS, DIVA
2.0, and CAADID, as appropriate (although current scores
were not available for everyone). One weakness was the IQ
difference across groups which resulted in altered findings of
the exploratory whole-brain analysis when IQ was covaried.
However, the use of ANCOVA to correct for IQ when
it is intrinsically different between groups [e.g., between
individuals with neurodevelopmental disorders relative to TD
controls (90–92)] and thus when the group memberships are
not randomly assigned, is statistically not appropriate since
it can lead to artifactual positive or negative results (93–
95). Furthermore, covarying for IQ mostly preserved the
conclusion from the ROI analyses especially with respect to
the under-activation of right IFG in the ASD+ADHD group
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relative to other groups, suggesting that the study was not
entirely powered for exploratory whole-brain analyses. Another
limitation is the inclusion of people currently prescribed
medication in the ADHD and ASD+ADHD groups as both
SSRIs and stimulants have been shown to affect brain
activation in people with these conditions [e.g., (35, 96,
97)]. However, findings remained when we covaried for
medication status and sensitivity analyses excluding individuals
on medication did not change the primary finding between
the ASD+ADHD and TD groups in this study. Additionally,
the narrow age range (20–27 years) of the young adult
participants limits generalizability of findings to the entire adult
ADHD and ASD populations. Finally, fMRI has limitations
with respect to temporal resolution. While we were mainly
interested in the spatial location of shared or disorder-specific
brain abnormalities in relation to the process of temporal
judgement in the disorders, adding a temporally better resolved
method would have allowed us to also understand differences
between disorders in the exact time course of activation
deficits. Thus, future studies may consider the combined
use of fMRI and physiological (e.g., electroencephalography
or magnetoencephalography) approaches with high temporal
resolution to complement the fMRI findings during time
estimation.

CONCLUSIONS

In summary, only young adult males with comorbid
ASD+ADHD showed reduced activation in right IFG during
duration discrimination relative to healthy controls and the pure
groups who were unimpaired. The findings suggest that right
IFG is not neurofunctionally impaired in young adults with
ADHD or ASD during time perception, although the finding in

the ADHD group particularly has to be viewed in light of the
possible moderating influence of IQ and medication use among

the participants in this study.
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