1,706 research outputs found

    Toward an Energy Efficient Language and Compiler for (Partially) Reversible Algorithms

    Full text link
    We introduce a new programming language for expressing reversibility, Energy-Efficient Language (Eel), geared toward algorithm design and implementation. Eel is the first language to take advantage of a partially reversible computation model, where programs can be composed of both reversible and irreversible operations. In this model, irreversible operations cost energy for every bit of information created or destroyed. To handle programs of varying degrees of reversibility, Eel supports a log stack to automatically trade energy costs for space costs, and introduces many powerful control logic operators including protected conditional, general conditional, protected loops, and general loops. In this paper, we present the design and compiler for the three language levels of Eel along with an interpreter to simulate and annotate incurred energy costs of a program.Comment: 17 pages, 0 additional figures, pre-print to be published in The 8th Conference on Reversible Computing (RC2016

    Light enhancement in surface-enhanced raman scattering at oblique incidence

    Get PDF
    Surface enhanced Raman scattering (SERS) measurements have been carried out at different focusing conditions using objective lenses of different numerical apertures. The experimentally observed dependence of SERS intensity of thiophenol-coated Ag nano-islands shows a close-to-linear scaling with the collection aperture. The linear relationship breaks down for large numerical apertures, which suggests that the scattering is anisotropic. Numerical simulations of realistically shaped Ag nano-islands were carried out, and the spatial distribution of hot-spots has been revealed at different heights near the nano-islands. Local field enhancements of up to 100 times were estimated. The simulation also suggests an explanation for the anisotropy in the scattering observed for larger numerical aperture objectives. This appears to be due to a reduction in the local field enhancement as the electric field vector component in the plane of the shallow metal islands reduces at larger angles of incidence

    ARGONNE LOW POWER REACTOR HEALTH PHYSICS MANUAL

    Get PDF

    Water and cosmology in the prehistoric Maltese world: Fault control on the hydrogeology of Ġgantija, Gozo (Maltese Islands)

    Get PDF
    The dry limestone geology of the Maltese islands presented a challenging environment to prehistoric communities, who required reliable water sources to support agricultural subsistence. Ġgantija, one of the iconic Maltese Late Neolithic Temples on Gozo, and now a World Heritage Site, was surveyed using Ground Penetrating Radar to reveal a significant line of geological faulting running beneath the megalithic structure. The seepage of water from this fault had major implications for the siting of the monument. This seems to reflect a pattern of situating many of these key sites adjacent to ancient sources of water, as is shown by the close association of two thirds of these sites with toponym evidence for the presence of springs in the medieval period. It is possible that the prehistoric Maltese embraced this natural resource as part of the cosmology of their ritual sites. © 201

    Light-induced reflectivity transients in black-Si nanoneedles

    Full text link
    © 2015 Elsevier B.V. All rights reserved. The change in reflectivity of black-Si (b-Si) upon optical excitation was measured by the pump-probe technique using picosecond laser pulses at 532 (pump) and 1064 nm (probe) wavelengths. The specular reflection from the random pattern of plasma-etched b-Si nano-needles was dominated by the photo-excited free-carrier contribution to the reflectivity. The kinetics of the reflectivity were found to be consistent with surface structural and chemical analysis, performed by scanning and transmission electron microscopy, and spectroscopic ellipsometry. The surface recombination velocity on the b-Si needles was estimated to be ~102cm/s. Metalization of b-Si led to much faster recombination and alteration of reflectivity. The reflectivity spectra of random b-Si surfaces with different needle lengths was modeled by a multi-step refractive index profile in the Drude formalism. The dip in the reflectivity spectra and the sign reversal in the differential reflectivity signal at certain b-Si needle sizes is explained by the model

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure
    corecore