12 research outputs found

    Cryptic species and genetic structure in Didemnum granulatum Tokioka, 1954 (Tunicata: Ascidiacea) from the southern Brazilian coast

    No full text
    Didemnum granulatum is a colonial fouling ascidian that lives in subtidal substrates, worldwide. It exhibits two morphotypes, orange and beige. In this study, we verified if the color morphotypes and/or the spatial distribution of specimens in different islands might be associated to patterns of genetic structure of a single species, or if they represent distinct cryptic species. Specimens were collected in four islands, along the coast of the Santa Catarina state. A segment of 490 bp from the mitochondrial gene cytochrome c oxidase subunit 1 (COI) was amplified from 45 samples. Twenty-one haplotypes were identified. The total haplotype diversity (0.912) and the total nucleotide diversity (0.044) were high. The global Fst of the populations analyzed was 0.97, with most of the variation occurring between orange and beige groups (82.19%). The variation found between populations within groups was 15.37%, and 2.45% within populations. Haplotype networks and the neighbor-joining tree showed clear genetic divergence between individuals of distinct colors, and between the islands. These evidences strongly support the presence of a complex of two cryptic species for D. granulatum occupying the studied area. Both species were also highly genetically structured between islands, suggesting that the conservation process of these populations is complex

    Cryptic species and genetic structure in Didemnum granulatum Tokioka, 1954 (Tunicata: Ascidiacea) from the southern Brazilian coast

    No full text
    Didemnum granulatum is a colonial fouling ascidian that lives in subtidal substrates, worldwide. It exhibits two morphotypes, orange and beige. In this study, we verified if the color morphotypes and/or the spatial distribution of specimens in different islands might be associated to patterns of genetic structure of a single species, or if they represent distinct cryptic species. Specimens were collected in four islands, along the coast of the Santa Catarina state. A segment of 490 bp from the mitochondrial gene cytochrome c oxidase subunit 1 (COI) was amplified from 45 samples. Twenty-one haplotypes were identified. The total haplotype diversity (0.912) and the total nucleotide diversity (0.044) were high. The global Fst of the populations analyzed was 0.97, with most of the variation occurring between orange and beige groups (82.19%). The variation found between populations within groups was 15.37%, and 2.45% within populations. Haplotype networks and the neighbor-joining tree showed clear genetic divergence between individuals of distinct colors, and between the islands. These evidences strongly support the presence of a complex of two cryptic species for D. granulatum occupying the studied area. Both species were also highly genetically structured between islands, suggesting that the conservation process of these populations is complex

    Suppressive subtractive hybridization libraries prepared from the digestive gland of the oyster Crassostrea brasiliana exposed to a diesel fuel water-accommodated fraction

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Diesel fuel can cause adverse effects in marine invertebrates by mechanisms that are not clearly understood. The authors used suppressive subtractive hybridization to identify genes up- and downregulated in Crassostrea brasiliana exposed to diesel fuel. Genes putatively involved in protein regulation, innate immune, and stress response, were altered by diesel challenge. Three genes regulated by diesel were validated by quantitative real-time polymerase chain reaction. This study sheds light on transcriptomic responses of oysters to diesel pollution. Environ. Toxicol. Chem. 2012;31:12491253. (c) 2012 SETAC31612491253Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPq [550706/2005-4

    Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.84Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)ERC AdG SISYPHEFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore