1,921 research outputs found
Ab-initio spin dynamics applied to nanoparticles: canted magnetism of a finite Co chain along a Pt(111) surface step edge
In order to search for the magnetic ground state of surface nanostructures we
extended first principles adiabatic spin dynamics to the case of fully
relativistic electron scattering. Our method relies on a constrained density
functional theory whereby the evolution of the orientations of the spin-moments
results from a semi-classical Landau-Lifshitz equation. This approach is
applied to a study of the ground state of a finite Co chain placed along a step
edge of a Pt(111) surface. As far as the ground state spin orientation is
concerned we obtain excellent agreement with the experiment. Furthermore we
observe noncollinearity of the atom-resolved spin and orbital moments. In terms
of magnetic force theorem calculations we also demonstrate how a reduction of
symmetry leads to the existence of canted magnetic states.Comment: 4 pages, ReVTeX + 3 figures (Encapsulated Postscript), submitted to
PR
Changing the Magnetic Configurations of Nanoclusters Atom-by-Atom
The Korringa-Kohn-Rostoker Green (KKR) function method for non-collinear
magnetic structures was applied on Mn and Cr ad-clusters deposited on the
Ni(111) surface. By considering various dimers, trimers and tetramers, a large
amount of collinear and non-collinear magnetic structures is obtained.
Typically all compact clusters have very small total moments, while the more
open structures exhibit sizeable total moments, which is a result of the
complex frustration mechanism in these systems. Thus, as the motion of a single
adatom changes the cluster structure from compact to open and vice versa, this
can be considered as a magnetic switch, which via the local exchange field of
the adatom allows to switch the cluster moment on and off, and which might be
useful for future nanosize information storage.Comment: 7 page
Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola)
Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long-term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false-positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin
Temperature dependent magnetic anisotropy in metallic magnets from an ab-initio electronic structure theory: L1_0-ordered FePt
On the basis of a first-principles, relativistic electronic structure theory
of finite temperature metallic magnetism, we investigate the variation of
magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We
apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt,
and find its uniaxial K consistent with a magnetic easy axis perpendicular to
the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of
values of M. For small M, near the Curie temperature, the calculations pick out
the easy axis for the onset of magnetic order. Our results are in good
agreement with recent experimental measurements on this important magnetic
material.Comment: 4 pages, 2 figure
Sliver® modules - a crystalline silicon technology of the future
A new technique has been devised for the manufacture of thin (<60µm) highly efficient single crystalline solar cells. Novel methods of encapsulating these Sliver® solar cells have also been devised. Narrow grooves are formed through a 1-2mm thick wafer. Device processing (diffusion, oxidation, deposition) is performed on the wafer, so that each of the narrow strips becomes a solar cell. The strips are then detached from the wafer and laid on their sides, which greatly increases the surface area of solar cell that can be obtained from the wafer. Further gains of a factor of two can be obtained by utilising a simple method of static concentration. Large decreases in processing effort (up to 30-fold) and silicon usage (up to 10-fold) per m2 of module are possible. The size, thickness and bifacial nature of the cells create the opportunity for a wide variety of module architectures and applications
Cluster coherent potential approximation for electronic structure of disordered alloys
We extend the single-site coherent potential approximation (CPA) to include
the effects of non-local disorder correlations (alloy short-range order) on the
electronic structure of random alloy systems. This is achieved by mapping the
original Anderson disorder problem to that of a selfconsistently embedded
cluster. This cluster problem is then solved using the equations of motion
technique. The CPA is recovered for cluster size , and the disorder
averaged density-of-states (DOS) is always positive definite. Various new
features, compared to those observed in CPA, and related to repeated scattering
on pairs of sites, reflecting the effect of SRO are clearly visible in the DOS.
It is explicitly shown that the cluster-CPA method always yields
positive-definite DOS. Anderson localization effects have been investigated
within this approach. In general, we find that Anderson localization sets in
before band splitting occurs, and that increasing partial order drives a
continuous transition from an Anderson insulator to an incoherent metal.Comment: 7 pages, 6 figures. submitted to PR
The SLIC Study: Size and Lung Function in Children
This dataset contains Body composition data (Whole body impedance from Bio-electrical impedance analysis and total body water from deuterium analysis) collected as part of the Size and Lung function In Children (SLIC) Study and a subset from Montagnese et al, Eur J Clin Nutr 2013 and reported in the manuscript entitled “Ethnic variability in body size, proportions and composition in children aged 5 to 11 years: Is ethnic-specific calibration of bio-electrical impedance required?” published in PLOS One
- …