787 research outputs found

    Using the Δ3\Delta_3 statistic to test for missed levels in mixed sequence neutron resonance data

    Full text link
    The Δ3(L)\Delta_3(L) statistic is studied as a tool to detect missing levels in the neutron resonance data where 2 sequences are present. These systems are problematic because there is no level repulsion, and the resonances can be too close to resolve. Δ3(L)\Delta_3(L) is a measure of the fluctuations in the number of levels in an interval of length LL on the energy axis. The method used is tested on ensembles of mixed Gaussian Orthogonal Ensemble (GOE) spectra, with a known fraction of levels (xx%) randomly depleted, and can accurately return xx. The accuracy of the method as a function of spectrum size is established. The method is used on neutron resonance data for 11 isotopes with either s-wave neutrons on odd-A, or p-wave neutrons on even-A. The method compares favorably with a maximum likelihood method applied to the level spacing distribution. Nuclear Data Ensembles were made from 20 isotopes in total, and their Δ3(L)\Delta_3(L) statistic are discussed in the context of Random Matrix Theory.Comment: 22 pages, 12 figures, 4 table

    Stability of the shell structure in 2D quantum dots

    Full text link
    We study the effects of external impurities on the shell structure in semiconductor quantum dots by using a fast response-function method for solving the Kohn-Sham equations. We perform statistics of the addition energies up to 20 interacting electrons. The results show that the shell structure is generally preserved even if effects of high disorder are clear. The Coulomb interaction and the variation in ground-state spins have a strong effect on the addition-energy distributions, which in the noninteracting single-electron picture correspond to level statistics showing mixtures of Poisson and Wigner forms.Comment: 7 pages, 8 figures, submitted to Phys. Rev.

    Thirty-fold: Extreme gravitational lensing of a quiescent galaxy at z=1.6z=1.6

    Full text link
    We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at z=1.594z=1.594 located behind the massive galaxy cluster eMACSJ1341.9−-2442 (z=0.835z=0.835). The system was identified as a gravitationally lensed triple image in Hubble Space Telescope images obtained as part of a snapshot survey of the most X-ray luminous galaxy clusters at z>0.5z>0.5 and spectroscopically confirmed in ground-based follow-up observations with the ESO/X-Shooter spectrograph. From the constraints provided by the triple image, we derive a first, crude model of the mass distribution of the cluster lens, which predicts a gravitational amplification of a factor of ∼\sim30 for the primary image and a factor of ∼\sim6 for the remaining two images of the source, making eMACSJ1341-QG-1 by far the most strongly amplified quiescent galaxy discovered to date. Our discovery underlines the power of SNAPshot observations of massive, X-ray selected galaxy clusters for lensing-assisted studies of faint background populations

    Light emission patterns from stadium-shaped semiconductor microcavity lasers

    Full text link
    We study light emission patterns from stadium-shaped semiconductor (GaAs) microcavity lasers theoretically and experimentally. Performing systematic wave calculations for passive cavity modes, we demonstrate that the averaging by low-loss modes, such as those realized in multi-mode lasing, generates an emission pattern in good agreement with the ray model's prediction. In addition, we show that the dependence of experimental far-field emission patterns on the aspect ratio of the stadium cavity is well reproduced by the ray model.Comment: 5 pages, 4 figure

    High-performance liquid chromatography analysis of mezlocillin, piperacillin, their degradation products, and of ioxitalamic acid in plasma and urine of healthy volunteers

    Get PDF
    In plasma and urine of 10 healthy volunteers after intravenous administration of 4 g mezlocillin and piperacillin, respectively, the parent compounds as well as degradation products were assayed by high-performance liquid chromatography. Ioxitalamic acid, a renal contrast medium, was administered simultaneously, in order to measure the glomerular filtration rate, and to control the collection of 24-h urine. As metabolite of mezlocillin the corresponding penicilloic acid only was found, whereas in the case of piperacillin a further degradation product was observed. Half of the doses given was recovered in the urine as unchanged drugs, and in addition 5-10% as metabolites. No differences were found in the pharmacokinetic behaviour of both antibiotics

    Ergodicity of the Δ3\Delta_3 statistic and purity of neutron resonance data

    Full text link
    The Δ3(L)\Delta_3(L) statistic characterizes the fluctuations of the number of levels as a function of the length of the spectral interval. It is studied as a possible tool to indicate the regular or chaotic nature of underlying dynamics, detect missing levels and the mixing of sequences of levels of different symmetry, particularly in neutron resonance data. The relation between the ensemble average and the average over different fragments of a given realization of spectra is considered. A useful expression for the variance of Δ3(L)\Delta_3(L) which accounts for finite sample size is discussed. An analysis of neutron resonance data presents the results consistent with a maximum likelihood method applied to the level spacing distribution.Comment: 24 pages, 19 figures, 1 tabl

    Geometric and impurity effects on quantum rings in magnetic fields

    Full text link
    We investigate the effects of impurities and changing ring geometry on the energetics of quantum rings under different magnetic field strengths. We show that as the magnetic field and/or the electron number are/is increased, both the quasiperiodic Aharonov-Bohm oscillations and various magnetic phases become insensitive to whether the ring is circular or square in shape. This is in qualitative agreement with experiments. However, we also find that the Aharonov-Bohm oscillation can be greatly phase-shifted by only a few impurities and can be completely obliterated by a high level of impurity density. In the many-electron calculations we use a recently developed fourth-order imaginary time projection algorithm that can exactly compute the density matrix of a free-electron in a uniform magnetic field.Comment: 8 pages, 7 figures, to appear in PR

    Chaotic scattering of atoms at a standing laser wave

    Full text link
    Atoms, propagating across a detuned standing laser wave, can be scattered in a chaotic way even in the absence of spontaneous emission and any modulation of the laser field. Spontaneous emission masks the effect in some degree, but the Monte Carlo simulation shows that it can be observed in real experiments by the absorption imaging method or depositing atoms on a substrate. The effect of chaotic scattering is explained by a specific behavior of the dipole moments of atoms crossing the field nodes and is shown to depend strongly on the value of the atom-laser detuning.Comment: arXiv admin note: substantial text overlap with arXiv:1201.032

    A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90∘^{\circ}

    Full text link
    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90∘^{\circ} are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.Comment: 10 pages, 15 figure

    Probabilistic Search for Object Segmentation and Recognition

    Full text link
    The problem of searching for a model-based scene interpretation is analyzed within a probabilistic framework. Object models are formulated as generative models for range data of the scene. A new statistical criterion, the truncated object probability, is introduced to infer an optimal sequence of object hypotheses to be evaluated for their match to the data. The truncated probability is partly determined by prior knowledge of the objects and partly learned from data. Some experiments on sequence quality and object segmentation and recognition from stereo data are presented. The article recovers classic concepts from object recognition (grouping, geometric hashing, alignment) from the probabilistic perspective and adds insight into the optimal ordering of object hypotheses for evaluation. Moreover, it introduces point-relation densities, a key component of the truncated probability, as statistical models of local surface shape.Comment: 18 pages, 5 figure
    • …
    corecore